Timed Concurrent Constraint Programming in Systems
Biology

Alejandro Arbebez, Julian Guérrez and Jorge A.é&vez
AVISPA Research GroupDepartment of Science and Engineering of Computing
Pontificia Universidad Javeriana, Cali, Colombia

{aarbelaez,jg,japerez }@cic.puj.edu.co

3rd November 2006

Abstract

Systems biology aims at getting a higher-level understanding of living matter, building on the avail-
able data at the molecular level. In this field, theories and methods from computer science have proven
very useful, mainly for system modeling and simulation. Here we argue that languages bdseddn
concurrent constraint programming (timed ccp) —a well-established model for concurrency based on the
idea of partial information— have a place in systems biology. We summarize some works in which our
group has tried to assess the possibilities/limitations of one such formalisms in this domain. Our base
language istcc, a non-deterministic, timed ccp process calculus that providesfeed frameworkor
modeling, simulating anderifying several kinds of biological systems. We discuss how the interplay of
the operational and logic perspectives thiatc integrates greatly favors biological systems analysis.

1 Introduction

Recent years have seen an extraordinary progress in the field of molecular biology. The enormous amount
of biological data gathered in the last years has generated a paradigm shift, in which giving such data a
coherent meaning is now a growing necessity for researchers. The interest is then to identify and understand
biological functionsbuilding on the available knowledge drasic elementsuch as proteins and genes. This
requires following asystem-level approachihere isolated data is structured as to make up interactions that,

in turn, will constitute more complex interactions at a higher level of abstraction. This is, broadly speaking,
the goal and motivations of what it is commonly referred tegstems biology

Process calculare abstract specification languages in which the notiopsaafessandinteractionpre-
vail in the formalization of systems exhibiting concurrent behavior. There is a natural correspondence be-
tween the kinds of interactions provided by process calculi and those present in biological systems. The
simplicity of such correspondence has captured the attention of experts in both domains. As a matter of
fact, calculi for mobile processes have been used in the biological context (se¢, é.9., [24]), and new calculi
focusing on particular aspects of biological interactions have been proposed (see [19] for a survey). This
research direction is sometimes called ldmguage approackor systems biology. Briefly, the idea consists
in defining someaworking analogiesetween both biological entities and phenomena and the elements of
the calculus. Evolution of biological systems can be then formalized by means of some (operational) se-
mantics provided by the calculus. In this context, most process calculi only offer modeling and simulation
capabilities.

Although this language approach has shed light on the nature of several biological systems, we believe
that logic-based reasoning techniques could effectively complement biological systems analysis. More pre-
cisely, we argue for process calculi basedtiomed concurrent constraint programming (ccp) [[27], 26] for
analyzing biological processes. Since process terms in ccp can be viewed at the same time as computing

*|http://avispa.puj.edu.co

http://avispa.puj.edu.co

agents and logic formulas, it can constitute a unified framework where biological systems can be described,
simulated and alswerified This paper aims at supporting this claim by summarizing our initial efforts in
this direction. Our base languagenscc [16], a non-deterministic, discrete time process calculus based
on ccp. Below we elaborate on how two salient featurestet—the interplay of partial information and
non-determinism and its logic-based reasoning techniques— can be convenient in the biological context.

Partial informationarises naturally in the description of biological systems. Biologists usually count
with partial information obtained from experimental measurements over the systems of interest; such infor-
mation should be exploited as much as possible so that working hypothesis can be refined and, at the end,
new experiments can be better oriented [15]. In the spirit of the language approach, and from a more abstract
level, partial information can be classified @santitativeandbehavioral While partial quantitative infor-
mationusually involves incomplete information on thtate of the syste(e.g., the set of possible values that
a variable can takepartial behavioral informatiorrefers to the uncertainty in the behavior of interactions
(e.g., the unknown relative speeds on which two systems interact).

These two kinds of partial information are naturally capturedtinc. On the one hand, partial quan-
titative information is captured by the notion ebnstraint systeima structure that defines logic inference
capabilities over constraints. Constraint systemgparametricto ntcc, which allows to state several kinds
of conditions by choosing the appropriate constraint system(s). On the other hand, partial behavioral infor-
mation is represented mon-deterministi@andasynchronous operatoesailable imtcc. We shall see how
the interplay of these operators in the discrete timetafc allows to explicitly describe and reason about
the uncertainty in the time occurrence of many biological phenomena.

Reasoning techniquésntcc allow to prove whether a given proceBsatisfy a given propert§’, using
a linear-temporal specification logic and its corresponding proof system. The symbolic flavor conveyed
by logic-based verification can effectively complement conventional simulations when analyzing biological
systems involving partial behavioral information. In fact, conventional simulations of biological components
which, e.g., act at unknown or unpredictable times, might not faithfully reflect the possible behavior of
the system. This kind of inaccuracies could be observed in simulations independently of how powerful
simulation tools are. This is but one situation where counting with logic-based reasoning tools would come
in handy for complementing analysis of biological systems.

We shall take advantage of these features by modeling biological systems as processes and their proper-
ties as linear-temporal formulas, alla single frameworkn which non-determinism and partial information
are essential. An additional advantage of usingc for the study of biological systems consists in the
possibilities of turning this theoretical framework into software tools. As a matter of fact, our group has
built ntccSim [412], a simulation tool that admits the description of biological systemstas processes
and allows to observe their behavior over time. Formalisms, methods and tools from timed ccp therefore
constitute a real alternative for biological systems analysis.

Plan of the document Sectior{ 2 further discusses the intuitions underlying systems biology outlined
above. Sectiof|3 introduces thecc calculus in a biological context. Sectiph 4 discusses some biological
systems that have been analyzed with our approach. Some related work is reviewed inf$ection 5.]Section 6
gives some concluding remarks and proposes directions for future work.

2 Systems Biology

Recent progresses molecular biologyhave allowed to describe the structure of many components making
up biological systems (e.g., genes and proteingy@satedentities. Instead of being alone, these entities
are part of complex biological networks present at the cellular environment (such as, e.g., genetic regulatory
networks) which define and regulate cellular processes. The current challenge is to move from molecular
biology to systems biology14,/15], in order to understand how these individual components and entities
integrateto each other in the networks they shape. Once this integration has been understood, it will be then
possible to discover how these entities perform their tasks.

Systems biology then aims at studying the mechanisms by which genes and proteins integrate and interact
among them inside an organism. That is, systems biology studies in an integrated way both the structure and
expression of a gene or a set of genes. The notiosystEmand multilevel interactionare crucial in this

study. The former is justified by the need of considering the interactions within the given system, under the
assumption that components of a system are not isolated and therefore influence each other. The latter refers
to the capability of analyzing the same biological system, observing and abstracting its essential properties,
at different levels of detail.

The complexity and size of biological systems motivates the use of computational techniques that allow
to build models of these systems tladitstracttheir behavior and make their study easier. More precisely,
in a hypothesis-driven research approach [15], computing techniques are at the start of a four-stage research
cycle that is complemented by analysis, technology and genomics phases. The idea is to use computer-
based techniques to simulate biological models representing contradictory issues of biological significance.
These so-calledry experimentshould reveal inadequacies of the assumptions embedded in models and,
after a phase where simulation results are analyzed and theories formulated, they are the wat{sdal)
experimentsFinally, the successful experiments will be those that eliminate inadequate models.

In this context, where the interest isrefinemodels by progressive simulations, existing languages and
formalisms from concurrency theory can be convenient. Notice that the above-described hypothesis-driven
approach heavily depends on the appropriate use of partial information in simulations. Moreover, counting
with hypothesis suggest that the use of logic methods for their analysis is reasonable. We now enter to
describe a suitable framework for carrying out this kind of analysis.

3 Timed Concurrent Constraint Programming

Here we give a concise, informal introductiontiecc, the process calculus that we have used to model
and verify biological systems. Based on|[12], we focus on hewc constructs can be convenient in the
biological context. The interested reader is referred to [16] for an in-depth presentatitecof

We start by briefly discussing some basic notions of concurrent constraint programming (ccp), a well-
established formalism for concurrency which generalizes Logic Programmihg [25]. One of the most appeal-
ing and distinctive features of ccp is that it combines the traditiopatationalview of process calculi with
adeclarativeone of processes based upon logic. This combination allows ccp to benefit from the large body
of techniques of both process calculi and logic.

In ccp the knowledge about the system is expressed in termanstraints or statements defining the
possible values a variable can take (exgt y > 7). These pieces of partial information ar®notonically
accumulated in shared medium, so-calieate Processes (or agents) then interact with each othtsllinyg
andaskingconstraints to the store. They synchronize according to the information in the store.

One fundamental notion in ccp is that o€anstraint systeminformally, a constraint system provides a
signature from which constraints can be constructed, and an entailment relation which specifies the inter-de-
pendencies among them. For operational reasons, we shall require this relation to be decidable. A practical
example of a constraint system is ED[[13]. In FD variables are assumed to range over finite domains and, in
addition to equality, we may have predicates that restrict the possible values of a variable to some finite set.

3.1 Thentcc process calculus

Thentcc process calculus [16] iste@mporalextension of ccp. Its process constructs naturally capture the
main features of timed and reactive systems. In particutare allows to model:

¢ non-determinisnto express diverse execution alternatives for a system from the same initial condi-
tions.

e asynchronyto represent unbounded but finite delays in the execution of a system.

¢ unit-delaysto explicitly model pauses in system execution.

e time-outsto express the possibility of default behavior, reasoning about the absence of information.
¢ synchronyto control and coordinate the concurrent execution of multiple systems.

¢ infinite behaviorto represent the persistent execution of a system.

ntcc formalizes discrete, reactive computation. nticc, time is conceptually divided intdiscrete
intervals (or time unity. In a particular time unit, a proced3 gets an input from the environment (an
item of information represented as a constraint), it executes with this input as the initial store, and when it
reaches its resting point, it outputs the resulting stbte the environment. The resting point determines a
residual procesB’, which is then executed in the next time unit. Notice that information is not automatically
transferred from one time unit to the following.

Process Syntax

Inntce, processe®, Q, ...€ Proc are built from constraints € C and variableg: € V in the underlying
constraint system by:

P,Q,... = tell(c) | > whenc;doP; |P||Q |localzinP
i€l
| mnext(P) |unlesscnextP | P |'P

Below we provide some intuitions regarding the behaviattafc processes.

Including and Querying (Partial) Information Processell(c), the simplest operation to exprezartial
information includes a constraintinto the current store, thus making it available to other processes in the
same time interval.

In the biological contexttell operations allow to represent at least two kindgaftial information
statements: so-callegtound rulesandstate definitiorstatements. The first ones precisely state certain con-
ditions that apply during the life of the biological system. These conditions can easily exploit the available
(possibly incomplete) knowledge. Complementatgte definitiorstatements refer to those constraints in-
tended to define the exact values for the variables in the system. This is particularly useful when one exactly
knows the set of possible states for the system at a given time; series of such statements (for different time
units) thus constitute a detailed view of the behavior of the system. Remarkabtgdteative flavorin
both kinds of statements could favor the definition of essential properties in (biological) models.

Guarded operation®f the formwhen ¢ do P complementtell operations and constitute the basic
means foquerying(or asking information about the state of a system. Intuitivelyyhen ¢ do P process
gueries the current constraint store: if the guarnd present in such a store then the executiorPaof
enabled. The “presence” efdepends on the inference capabilities associated with the store. That is, a
particular constraint could not be explicitly present in the store, but it could be inferred from the available
information. It is straightforward to interprethen operations as a way of expressing flreconditionsfor
reaching a particular state of the system. The behavior of the system can be precisely stated in this way.

Non-deterministic Choices Non-determinism allows to represent several possible courses of action from
the same initial state, without providing any information on how one of such courses is seleciedc,n
non-deterministic behavior is obtained by generalizing processes of thewtwen ¢ do P: a guarded-
choice summatior) , , when ¢; do P;, wherel is a finite set of indexes, represents a process that, in
the current time interval, must non-deterministically choose one ofthgj € I) whose corresponding
constraintc; is entailed by the store. The chosen alternative, if any, precludes the others. If no choice is
possible then the summation is precluded. Welse; P; as an abbreviation for the “blind-choice” process
> ic; When true do P;. We useskip as an abbreviation of the empty summation aad for binary
summations.

In the biological context, the combination of guarded choices and partial information represents an ap-
propriate mechanism to formalize the inheranpredictabilityin system interactions. In this sense, non-
deterministic choices allows to explicitly represeattial behavioral information

Communication ProcessP || @ represents the parallel composition®fand(@). In one time unitP and
@ operate concurrently, “communicating” via the common store by adding and querying information. We
use[[;c; P, wherel is a finite set of indexes, to denote the parallel composition dPall

Local Information Inntcc, processes of the forimcal x in P behave likeP, except that all the infor-
mation onz produced byP can only be seen by and the information on: produced by other processes
cannot be seen h¥.

Although the conventional spirit of this kind of operators is to restrict the interface through which a
process can interact with each other, in the context of partial information local information may represent
a valuable help in the analysis of systems. When performing overall analyzes of complex systems, local
variables may help to “hide” the behavior of those components that are irrelevant in the interactions to be
analyzed. The interplay of hiding and partial information may allow to analyze systems at different levels of
detail.

Basic Timed Behavior The basic time operator imtcc is next (P), which represents the activation of
P in the next time interval. That isiext (P) models aunit-delayof processP. It can be also considered as
the simplest way of expressing dynamic behavior over time. This is fundamemntat iy since information
is not automaticallytransferred from one time interval to the next. Basedwert (P), more sophisticated
delay constructs can be defined: we ne&t” (P) as an abbreviation fatext (next (...next (P))...)),
wherenext is repeated times.

Absence of Information / Unexpected Behavior In the biological setting, to be able of reasoning about
absencef information is both important and necessary. Although sometimes it is possible to predict some
of the possible future states for a system, usually there is a strong need of expuessipgcted behavior

In this kind of scenarios, processes of the fammless ¢ next P may come in handyP will be activated

only if ¢ cannot be inferred from the current store. The “unless” processes thus add (weak) time-outs to the
calculus, i.e., they wait one time unit for a piece of informaticto be present and if it is not, they trigger
activity in the next time interval.

Asynchrony Thex operator allows to express asynchronous behavior through the time intervals. Process
*P represents an arbitrary long but finite delay for the activatioR .of

This kind of asynchronous behavior therefore constitutes another instance of partial behavioral informa-
tion: in addition to the partial informatioon the variableghat are part of the state of the system (and that
can be expressed by the operators discussed above)pfherator allows to express partial informatiom
the time unitswhere processes are executed. This is particularly interesting when describing (biological)
processes that interact@atknown relative speeds

The partial information spirit of the asynchronous behaviottrc is strengthened by the following
derived operator, expressibgunded eventuality

*in,m) P =next™ (P) + next™™ (P) + .-+ + next™ ' (P) + next™ (P).

This temporal operator thus represents an additional amount of partial information, as it ensuPewithat
be activated at some point within the time units in the closed interval of nafurats]. As in the original
operator, there is no additional information of when this restricted eventuality will take place.

Persistent Behavior Somehow opposed to the eventual behavior enforced by asynchronous beyevior,
sistent(or infinite) behavior serves to express conditions that are valid during every possible state of the
system. Theeplication operator! P represents || next (P) || next?(P) || ..., i.e. unboundedly many
copies of P but one at a time. As such, persistent behavior is an appropriate way of enforcing conditions
stating ground rules of the systems of interest. It also can also be understood as a mechanism that allows
to move fromstatic descriptions or conditions (valid only in one state of the systerdyt@micstatements
that are always valid.

As in the asynchronous case, it is possible to derive a bounded version of the persistent operator:

'n,m] P = next” (P) || next"™ (P) || --- || next™ ™! (P) || next™ (P).

This operator represents the fact tifais always active during all the time units in the interfialm]. As its
eventual counterpart, this derived operator (knowh@mded invariandemay come in handy when certain
additional information regarding the (persistent) executioR @ available.

Viel P+ A;
LTELL tell(c) F ¢ LSUM AR :
Ziel when c¢; do P; + \/iel(ci ANA)V /\ieI S
PHAQFB PrFA
LPAR _ LUNL -
P||QFHAAB unless ¢ next PFcVvOA
PFA PFA
LREP _ LLOC —_—
'\P+OA localzin P+ 3, A
PFA P A PFA
LSTAR _— LNEXT ——MWM——«— LCONS if A= B
*PF GA next (P) - 0A P+B

Table 1: A proof system for (linear-temporal) propertieaoéc processes

A Logic Approach for Property Verification

ntcc is associated with a linear-temporal logic, which is defined as follows. Formylas... € A are
defined by the grammar:

AB,...:=c|A=>A| “A| 3, A|0A|OA| SA.

Here ¢ denotes an arbitrary constraint which acts as an atomic proposition. Symbotsand 3, rep-
resent linear-temporal logic implication, negation and existential quantification. These symbols are not to
be confused with the logic symbois, — and3, of the constraint system. Symbats [0 and <> denote
the linear-temporal operatorext alwaysandeventually We useA V B as an abbreviation of A = B
and A A B as an abbreviation ofi(- AV~ B). The standard interpretation structures of linear temporal
logic are infinite sequences of states.nltxc, states are represented with constraints, thus we consider as
interpretations the elements@©f. Whena € C¥ is a model of4, we writea |= A.

We shall say thaP satisfiesA if every infinite sequence that can possibly output satisfies the property
expressed byl. A relatively complete proof system for assertidns- A, whose intended meaning is that
P satisfies A, is given in TabJé 1. We shall wriet- A if there is a derivation of - A in this system.

4 Usingntcc for Analyzing Biological Systems

In this section we describe how we have applied our approach for biological systems analysis in several
kinds of systems. These include: mechanisms for active transport of substances through cellular membranes,
genetic regulatory networks (GRNs), and mutations over a GRN. We briefly comment on the nature of the
modeled systems and describe thaitc models.

4.1 Active Transport in Cellular Membranes

In [12] we have usedtcc to model and verify arion pump a natural channel connecting the two sides

of a membrane. These pumps move ions across the membrane in a processaadisait Depending

on the source of the required energy, the transport can be pitissiveor active In passive transport ions

freely move across the membrane following an electrochemical gradient, so the cell does not need to provide
energy for the transport. Since in active transport ions move against the direction of the gradient, the cell has
to supply energy (usually in form of ATP) to accomplish this movement.

The Sodium-Potassium pumlp [28] (SP-pump in the sequel) is a system for active transport in animal
cells. It exchanges Sodium ions inside the cell with Potassium ions outside of it. The pump is composed of
two proteins known as the alpha and beta subunits. The purpose of the pump is to keep the concentration
of sodium inside the cell lower than outside. This difference of concentrations generates an electrochemical
gradient that leads the passive transport of Sodium ions towards the cytoplasm in the cell. If the pump
does not work well then the gradient becomes weak for transport, thus affecting the entrance of required
substances into the cell.

The pumping process in the SP-pump can be divided in six phases. At the beginning there is a pump
conformation with high affinity for Sodium ions inside the cell (1). This conformation encourages the
binding of three Sodium ions with the pump. Then the alpha subunit is phosphorylated by ATP hydrolysis
(2), leaving a residual ADP molecule in the cytoplasm. This chemical reaction provides the needed energy
for the pumping process. Once this occurs, the pump conformation changes and then the Sodium ions can
leave the cell (3). At this point, there is a pump conformation with high affinity for Potassium ions outside
the cell (4). This results in the binding of two Potassium ions with the pump. Hence, the alpha subunit is
dephosphorylated (5) and the pump conformation returns to the initial state. At this moment Potassium ions
can enter the cell (6). The pumping process is always performed regulating the concentration of Sodium in
the cell.

In parallel to this active transport movement, therepsissivaransport movement that allows Potassium
and Sodium ions to move against the direction of the active transport. This complementary movement is
induced by an electrochemical gradient present in the cell.

Elements of anntcc model of the SP-pump

Here we describe the main principles underlyingdhec model of the SP-pump. We use non-deterministic

and asynchronous behavior for modeling partial behavioral information regarding temporal responses of
certain components. We use mutable entit@sl$) and recursive definitions in some of our models. Cells

can be easily encoded irtcc; see|[16] for more details.

The model assumes a constraint system over finite domains of integers, considering three places for
interaction: inside and outside the cell, and an intermediate place where ions stay before entering or flowing
out of the cell (i.e., the pump). The model involves a series of cells that store useful quantities about the
pumping process. We use notatians v andzx := v to represent thaitialization and theassignmenof a
cell z with valuew, respectively. Output and input operations of the pump are then modeled as modifications
over variables representing the number of ions both inside and outside the cell. In this way, for instance,
variablesNVao andNa; represent the amount of Sodium ions placed outside and inside the cell, respectively.
In addition, a certain amount of each kind of ion needed for the correct functioning of the cell is assumed.
Such amounts are denoted By ppar, andK;pgar,. Moreover, some additional variables capture other
details of the pumpO Pump represents the orientation of the pump (either inside or outside thetkihq
denotes the current binding of the alpha subunitBaep represents the current content of the pump. These
three variables will be instantiated with constants that can be encoded by integers: for instance, possible
values forAilpha areP, free andnull (note the special font style given to constants). Finally, integer
variablesAT P and AD P represent the presence of ATP and ADP inside the cell, respectively.

The complete model for the SP-pump (denoted as\th& Pump process) reflects the complementary
nature of active and passive transport in the SP-pump, and is represented by the integrétionedtrans
and PassiveTrans processes. From thi¥aK Pump process it is then possible to assume some environ-
ment in which the pump is placed. This is the intuition behind proSgsgem. We now proceed to explain
in a greater detail the ideas behind these processes. For the sake of space, we only include fragments of the
model; the interested reader is referred td [12] for complete details.

Active Transport Phases ProcessActiveTrans integrates sub-processes for the six phases described
before; these processes invoke each other. Some processes include recursive calls to themselves. This
intends to represent the possibility that the system remains stuck in certain phases, even if all the conditions
needed to evolve are given. That is, we are trying to model “reversible” phases, a behavior that is represented
by non-deterministic choices. As a result, those phases could be executed several times therefore delaying
system execution in at least one time unit. Such a delay occurs because the system waits for the presence of
some substances at a specific place of the pump. In fact, those substances could be available but not in the
required place. Figufg 1 presents a fragmem@afiveTrans in which the phases where the Sodium leaves
out the cell are represented. Proc8gsPhase2 is the only reversible phase.

The above-described non-deterministic and asynchronous behavior could represent other conditions on
component binding, such as an appropriate physical contact among elements that (chemically) react with
components of the pump. Similarly, non-deterministic behavior can also represent some kind of malfunction.

NaPhasel = when (Nar > NarpeparV Kir < Kipgar) A Pump = Empty A OPump = Indo
(next (Nar := Nar — 3 || Pump := Na || tell(unchangedK = 1) || NaPhase2) +
next (NaPhasel || tell(unchangedK = 1) || tell(unchangedNa = 1)))

NaPhase2 = when Pump = Na A Alpha = free N ATP > 0do
(next (OPuwmp := Out || Alpha :==P || ADP :=1||
tell(unchangedK = 1) || tell(unchangedNa = 1) || NaPhase3)
+ next (NaPhase?2 || tell(unchangedK = 1) || tell(unchangedNa = 1)))

NaPhase3 = when Pump =Na A OPump = Out do
next (Nao := Nao + 3 || Pump := Empty || tell(unchangedK = 1) || K Phasel)

Figure 1: Fragment of thetcc model for the active transport phases of the Sodium-Potassium pump

PassiveNa Lof unless Nap = Na; next
(next’ (PassiveNa) ||
*[0,5](unless unchangedNa =1 next (Na;:= Na;+ 3| Nao := Nao —3) ||
when unchangedNa =1do (Naj := Na; + 3 || Nao := Nao — 3)))

PassiveTrans = PassiveNa || PassiveK

Figure 2: Fragment of thet cc model for the passive transport phases of the Sodium-Potassium pump

For instance, in phas®¥aPhase2 the phosphate could not bind to the alpha subunit, which would result in
a malfunction of the system that could be directly observed from the evolution of the pump in time.

Passive Transport Phases Passive transport is represented by prodesssiveI rans, which defines

two sub-processes: one for the entrance of Sodium ions and another for the output of Potassium ions. In

the modeling of these sub-processes we consider partial behavioral information on the actual time when the

ion movement really occurs, which is represented by a bounded asynchronous operatof.] Figure 2 describes
a fragment ofPassivel rans.

Additional Processes The integration of the above processes as inNlag Pump process is straightfor-

ward. There is an additional process (i@agntrol) which governs the global behavior of the pump w.r.t.

the equilibrium of the ions amounts; in the case an equilibrium on the amount of one of the ions is reached,
a general system malfunction (denoteddasth = 1) is established. As the other processes, the structure

of this control process makes it possible the inclusion of additional features. P&ieg$swhich receives

a group of six parameters (denotedas), sets up the variables used in the model. Fifure 3 shows a
fragment of the complete model.

Remarkably, our models can be parametrized with actual quantitative values extracted from experimen-
tation. Indeed, ion concentrations depengarametersvhich make it more accurate; more detailed models
involving other biological components (such as, e.g., the electrochemical gradients governing the dynamics
of the passive transport) would then require the inclusion of more sophisticated numerical parameters. In this
sense, considering a constraint system over real numbers would not only allow to include such parameters
but also would allow to perform analyzes at different levels of detail.

Verifying the SP-pump

We now briefly describe how a non-trivial biological property can be verified over the sketehednodel
of the SP-pump. Assume amhibition processover the SP-pump that is enforced by a malicious drug that

NaK Pump < Jocal Nar,Nao,Kr, Ko, Alpha, ADP, Pump, OPump in

Start(o1...6) || ActiveTrans || PassiveTrans || Control

System & NaK Pump || Environment

Figure 3: Integratedtcc model for the Sodium-Potassium pump (Fragment)

is present in the environment surrounding the pump. The goal of this drug is to take control of the alpha

subunit, thus preventing the phosphate from inducing a conformational change in the pump. Such an this
obstruction will lead to a complete inhibition of the active transport mechanism of the pump. We express

this in our model by specifying thBnuvironment process as follows:

Environment < Drug [, n) when Alpha = free do !Alpha := null (n>m) (1)

It is easy to see that the actual time unit whéreug will be active is undetermined, because of the uncer-
tainty induced by the- operator. Notice that we are focusing on the drug-related paftrafironment:
other aspects of it could be easily specified.
Clearly, by inhibiting the active transport component of the pump, the cell will reach an equilibrium

between the internal and external Sodium concentrations. Sucteagrsibleequilibrium causes the death
of the cell and will occur in an undetermined future. These facts suggest us the following assertion to be
verified:

NaKPump || Drug + $O death = 1 (2

wheredeath = 1 represents the death of the cell. Intuitively, we want to formally verify that in the presence
of the drug described above the cell will die in an undetermined future, with no chance of returning to a
previous state.

In [12] we use the inference systemmfcc to derive a proof for(2). Informally, the idea is to restrict the
attention to the interaction amot¢pntrol, PassiveNa and Drug. Due to the absence of the active trans-
port mechanism the passive transport will introduce sodium ions into the cell until reaching an equilibrium
(i.e., Na;y = Nap). Once that occurs; ontrol (that has been awaiting the equilibrium) engigsil Na = 1
to the environment. Such a signal is enough to determine the death of the cell.

4.2 Genetic Regulatory Networks

Here we discuss how genetic regulatory networks (GRNs) can be modeleddnWe propose a group of
“building blocks” for modeling: each block represents a particular behavior that is frequent in GRNs. Some
of these blocks argeneric processehat can be parametrized according to the specific GRN, while others
aretemplateghat give guidelines on how to define actuakc processes. They have been used [h|[3, 2] to
model and simulate regulation processes (repression and induction)la€tbeeron a genetic cluster that
participates in the the transport and metabolism of lactose in bacteria suchEasbk

Building Blocks for Modeling GRNs

GRNs are one of the most studied systems, mainly because of its importance at the cellular level. They
control (or regulate) cellular processes according to the information provided by the ADN of each organism.
At the molecular level, GRNs depend on many factors which make them particularly difficult to understand.
Finding concise mathematical models describing behavior of GRNs is challenging as they are composed of
elements that can be related to both discrete and continuous systems. In spite of this, it is possible to abstract
some features that are common to GRNs at the molecular level. We now desatibenodels for such
features ablocksthat might help to better formalize GRNs.

Continuity Regulation in GRNSs is determined by the concentration levels of different biological entities
along time. This motivates to consider two different kinds of continuity: persistence in the values of the
variables and continuous time.

To model persistence of a single variable it is easy to think in a pragess; that, for a variablen;,
explicitly transfers the current value of; to the next time unit. More precisely, the idea is, in the current
time unit, to schedule a proceSsate; (v;) that will set the variablen! (which represents the value of; in
the previous time unit) withy;, the current value ofz;. This idea can be extended to a group of values in a
straightforward manner:

State(pi, ..., pn) e H (tell(m; = p;) || next (State;(pi)))

i€l
wherel is the set of indexes of variables in the biological systemgarid the current value of;. State

can be used to configure system simulations with parameters coming from actual biological measurements.
Temporal continuity is achieved by considering mamyc time units as “samples” of one system unit:

Timep:(t) 2 tell(Ts = t) || next (Time(t + Dt))

whereT's is thecontinuougime value of the system in the current time unit. Consfahtrepresents the
resolutionof the system: it gives an idea of how fine the sampling is. As such, we can expect a trade-
off between precision and efficiency: lower valuesiof give better approximations of real continuous
systems but will demand more resources in system simulations. Pibgessnic below can represent the
continuous behavior of the whole system.

Dynamic Lef State(p1, ..., pn) || Timept(0.0)

Molecular Events Molecular systems involve several events that have to be considered, such as, e.g., the

detection of when a group of molecules interacts with others or performs a specific task. We shall use

discrete variables to indicate either presence or absence of molecular events in models. Such variables will
be calledsignaling variables The following is a generiatcc process representing molecular behavior:

Signal ECI H (when e do next (tell(svar = 1)) || unless e next tell(svar =0))
e€E, svareS

where E is the set of constraints expressing molecular eventsSatite set of signaling variables in the
system. Some readers might relate this process with an if-then-else construct. Nevelgteggqrovides
a more sophisticated behavior as it can reason admence of informatioan the conditions ir.

Regulation and status values Most of the processes used to represent dynamic behavior of biological
entities share a similar structure. They can be modeled as processes controlled by signaling variables. The
parametric procesRegulate; models the behavior of an entitywhich is under the control of a signaling
variable svar. The value ofsvar determines the execution of eith€f or N;; this is represented as an
exclusive choice.

Regulate; (svar, P;, N;) 4f When svar = 1 do P; + when svar = 0do N;

To modelstatus(or level) of gene transcription, we use procésstus; below as a@emplateto define a
wide variety of situations in which we want to determine particular conditions in/of a biological entity.

Status; <! ((Z when cond, do next (tell(m; = fc;(m})))) || unless \/ condy mnext tell(m; =m)}))

ceC c'eC

The above process assumes that conditions for changes in the status are indexed b tise $et two
differents, j, cond; andcond; are two different conditions. The new value is defined by a control function
fci. When no condition for change holds, the state of the system remains unchanged in the next time unit.

10

Genes Processien, below is a parametric specification representing the structure and behavior of a single
gene. ltis defined using the generic procRsgulate; and the templatStatus;. The considered parameters
represent the degradation and production rates of mMRNAs as well as the proteins produced in the transcription
and translation of a gene. We consider three entities: level of transcription and concentration of both mRNAs
and proteins produced by the gene.

GenStatus; < | ((when thegin =1 Atend =0 do next (tell(m; = m) + 1)) +
when tbegin = 0 A tend = 1 do next (tell(m; = mj; —1))) ||

unless tbegin # tend next tell(m; = m;}))

MRNA(p;j,d;) = Regulate;(tbegin, next (tell(m; = m) + p; — Dt x (d; x m}))),
next (tell(m; = m — Dt x (d; x mj))))
PROTEIN(pr,di) < Regulatey(mrnah, next (tell(my, = mj, + Dt x (px x mj — dx x mi))),
next (tell(my = mj — Dt x (dy x m}))))
Gena(pj,dj,pr,di) = GenStatus; ||| MRNA;(p;,d;) || ! PROTEIN:(px, di)

In Gen,, m;, m; andmy, are variables representing the status of gene expression, mRNA concentration
and protein concentration, respectively. Moreowgrandd;, represent the rate of molecular degradation of
mRNAs and proteins, respectively. The production rate of these entities is determined by the cppstants
andp; and by two signaling variablds$egin andtend. These denote the starting and ending time of RNA
polymerase gene transcription. Signaling variableiah is used to indicate when the mRNA concentration
is “high enough” to start protein translation.

In order to model when RNA polymerase is placed between two genes an additional process is required.
Such a process should control when each gene starts and finishes transcription. In [3] this process is modeled
using theStatus; template.

4.3 Modeling Biological Mutations

In this example we are interested in modeling the control system of a GRN. Below we definetitegmo-
cessesStartControl, MutatedGene andWildGene. The first process indicates the number of molecules
interacting with the control region at the start of the study of the system. The second one defines the system
behavior under mutated conditions. The last one represents the system behavior in wild or normal condi-
tions. Variabler represents the cellular concentration of molecules interacting with the control region of the
set of genes.

StartControl = tell(z =n)
MutatedGene % x! (tell(mut = 1) || next (tell(z = f,)))
WildGene ' 1unless mut =1 next tell(z = fu)
Control Region < Start || MutatedGene || WildGene

In the above definitions, procedsutatedGene establishes that a mutation will eventually occur in the gene

in an undetermined future time unit and, as a consequence, the behavior of the system will be defined by the
constraintc = f,,,, wheref,, is a function determining an incorrect behavior in the gene control region. In
addition, proces$VildGene states that the behavior of the control region is represented by the constraint

x = f,, unless the mutation occur (which is represented by constraint= 1). Functionf,, represents the
behavior of the system in wild conditions. Figlije 4, obtained usingSim, illustrates the behavior of the
system parametrized with value= 0.

11

Hutacion

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
Tienpo

Figure 4: Molecular concentration in a DNA region of a mutated gene

A Complementary Proof In this section we will verify a system property using the inference system
associated witmtcc. As a case of study, we will verify that when the mutation occur, variablell be
determined only by functiorf,,,. Formally, we wish to verify the following formula:

ControlRegion F $Ox = f,

The formulas for procességartControl, MutatedGene andWildGene are:

StartControl F z=mn
MutatedGene + OO(mut = 1A 0z = f,)
WildGene F O(mut =1V Oz = f,)

" LTELL LRULES1

StartControl - x = MutatedGene - $O(mut = 1A Oz = f,,) LPAR

StartControl || MutatedGene - (z=n) A (QO(mut =1A 0z = f,))

whereLRULES1 denotes the systematic application of rulé3AR, LREP, LPAR, LNEXT andLTELL of
the proof system over procedsutatedGene. For the sake of space, we assume the following abbreviations:
SC = StartControl and MG = MutatedGene.

WildGene - (O(mut = 1V 0z = fu)) "RULES2 Se G (2 =n) A (OD(mut = 1A%z = £)))

WildGene || SC || MG+ (O(mut =1VOzx =f,)) A(z=n) A(O0O(mut =1A0z = f,))

LPAR

whereLRULES? represents the application of ruleREP, LUNL andLTELL over procesdVildGene.
Finally, we can perform the following deduction:

ControlRegion - (O (mut =1V Oz =f,)) A(z=n) A (OO (mut =1A0z = f,))

ControlRegion + 0O (mut = 1V Oz = f,) AQOO (mut = 1A Oz = f,)) LCONS LCONS
ControlRegion = QO ((mut =1V Ox = f,) A (mut = 1AOx = f,)) LCONS
ControlRegion F OO (mut = 1A (mut = 1A Ox = f,,
g QO ((fm)) LCONS

ControlRegion - $OOx = f,,
ControlRegion = OOz = fr,

LCONS

12

The above logical expression verify that the constraiet f,, will define the behavior of the system in an
undetermined future time, and that this behavior will continue forever.

We have shown how the behavior of a system can be analyzed by two formal ways: (i) by following
the steps of the operational semantics in a mechanical way, ugin§im (Figure[4) and (ii) by verifying
temporal properties using theccc inference system. A remarkable aspect to consider here is that it is
possible that we may not see the mutation by simulations, since this could occur in a very long time. As a
consequence, in this case the logical proof can be regarded as being more effective, as it can reveal the actual
behavior of the system.

5 Related Work

Some of the main representative calculi within the so-called language approach for systems biology are
the m-calculus [22, 23], BioAmbients [21], the Brane calculbs [8], Beta binders [20] and-tedculus

[9]. The use of these calculi as as description languages for Biology has been studied in recent years and,
as mentioned in the introduction, little work has been done on relating them with logic-based reasoning
technigues. Some of such works have explored the use of constraints and/or logic in the biological context,
see, e.g.! [11]5]6l 1]. Two of then ([5, 6]) are most related to our approach and deserve special mention. We
review them separately.

Stochastic CCP Stochastic CCP (sCCF)|[5] is an untimed, stochastic extension of the ccp model. The
main difference wrt the original model proposed |in|[27] is the addition of fanction to ask and tell
operations as well as to procedure calls. The intuitive meaning of this function is twofold. In fact, it can be
understood either as a priority within a probability distribution or as the speed associated with performing
each operation. From a practical perspective, there is an interpreter of SCCP processes, built in SICStus
Prolog, that allows for simulation of biological systems.

In order to model biochemical networks, the workin [5] offers parameterizable processes to describe
reversible and irreversible reactions as well as reactions described by Michaelis-Mentel and Hill equations.
The definition of similar processes irtcc this is also possible. Moreover, to model genetic regulatory
networks, three basic processes Ifmyical gate3 are proposed to model regulation. More precisely, pro-
cessegosgate neggate andnull_gate intended to model positive, negative and absence of regulation,
respectively, are proposed. This kind of SCCP processes can be easily modeied.in

Clearly, the use of stochastic parameters is the main difference between sCfi2 and/e have already
started to work on equippingtcc with probabilistic/stochastic constructs (see Sedtion 6). We feel that the
combination of probabilistic behavior with the discussed advantagescefin the biological context (time,
partial information, logic reasoning techniques) will constitute a strong framework where biological systems
can be better studied.

Temporal Logic with Constraints The works|[[6, 7] propose BIOCHAM, a biochemical abstract machine.
In BIOCHAM biological systems are modeled using a rule-based language. This approach is, according to
the authors, more natural to the biologists and well-suited for applying model checking techniques. This
is perhaps the main difference wrt our approach, as processesinhave a natural relationship with
the temporal logic associated to the language. Furthermore, we think that the explicit time representation
inherent tontcc can, in combination with the non-deterministic and asynchronous constructs, be intuitive
enough for experts when describing the behavior of (possibly partially known) biological systems.
Reasoning techniques include three independent semantic structures (each one with an associated logic),
which are used depending on the desired level of detail. The simplest semantit®ddeanone that
associates a boolean variable to each biological entity, with the possibility of cheplatitativeproperties
using Computational Tree Logic (CTL). In tle®ncentrationsemantics each entity is associated to a real
number representing its concentration. Reaction rules are interpreted as kinetic rules and a fragment of
LTL is used for verification. Finally, in thetochasticsemantics an integer is used to model the number of
molecules of each entity in the system. Notice how for each level of abstraction there is a different meaning
for the modeling language and different verification approaches. We believe that by the appropriate use of

13

constraint systems in the description of systems, analysis at several levels of detail are possible, preserving
thesame unified framework

6 Concluding Remarks and Future Work

In this paper we have shown hawcc, a timed, non-deterministic process calculus based on constraints,
can be convenient for the analysis of different kinds of biological systems. We have seen how the interplay
of the operational and logic perspectives of processes —a distinctive feature of ccp languages— serves as
a unified framework upon which expressive models of biological systems can be described, observed and,
unlike most similar works, verified using a temporal logic.

The discussed biological systems serve to illustrate the advantages ohtisinim the biological con-
text. In fact,ntcc allows to take advantage of the natural usprotessesas independent agents to model bi-
ological entitiesdiscrete timeconstructs as flexible mechanisms to describe dynamic properties of systems,
constraintsas a way of representing incomplete information about the state of a system (i.e.,qaatial
titative information), andasynchronous and non-deterministionstructs to formally model unpredictable
behavior in the evolution of a system (i.e., parti@havioralinformation). Moreover, these advantages in
modeling are complemented by both practical and theoretical opportunities for simulating and verifying bi-
ological models. On the one hand, it is possible tot#itinc specifications imtccSim in order to know a
possible execution path showing the behavior of a system, given a set of particular conditions (e.qg., initial
number of molecules in a system). On the other hand, the use of an LTL inference system to prove temporal
properties abouttcc models allows to discover non-trivial behavior patterns, including those encompassing
asynchronous and non-deterministic nature. This tight relationship between operational and logic reasoning
tools is rarely seen in other formalisms, even in those also based on the ccp model.

All these appealing features certainly motivate us to further work on the applicatianscefto the
biological context. A current work direction pertains to the use of quantitative information in models of
biological systems. Particularly important is the inclusion of probabilistic/stochastic information both in
ntcc models anchtccSim. We have already obtained some preliminary results. In facl, in [17] a version
of ntcc in which the signature of the constraint system is extended with a probability function is proposed.
Intuitively, the role of such a function is to return “true” or “false”, taking a real number as a parameter. This
adds a significant flexibility to process definitions, as one could devise processes that are executed depending
on the outcome of such a function. The advantages of using this extended language in the biological context
were described irj [18], where cooperativity in a genetic regulation network is formally studied. Moreover,
we count with preliminary results on the design opmbabilistic extension ofntcc with probabilistic
choice. We expect to refine these theoretical extensions by modeling, simulating and verifying more complex
biological systems than the ones analyzed so far.

From a more practical point of view, the development of efficient mechanisms for including ordinary
differential equations (ODES) in models and simulations is also compulsory. Although we have defined
some encodings of ODEs usimgcc, we plan to implement a constraint system over ODEs in Mozart.
Such a system, in combination with the existing constraint systems over real intervals and finite domains,
will allow to take advantage of the knowledge currently held by biologists about the structure and behavior
of molecular systems, and consequently, to contribute to fill the gap that prevents computer scientists from
straightforwardly using some well studied models of biological networks.

References

[1] M. Antoniotti, C. Piazza, A. Policriti, M. Simeoni, and B. Mishra. Taming the complexity of biochemical models
through bisimulation and collapsing: theory and practifieeor. Comput. Sgi325(1):45-67, 2004.

[2] A. Arbelaez and J. Gutirez. Estudio Exploratorio de la Aplicéei de la Programagn Concurrente por Re-
stricciones en Bioinforiatica (Applying Concurrent Constraint Programming in Bioinformatics: An Exploratory
Study). BSc Thesis — Engineering Degree in Computer Science, Pontificia Universidad Javeriana - Cali (Colom-
bia)., 2006.

14

[38] A. Arbelaez, J. Guérrez, C. Olarte, and C. Rueda. A generic framework to model, simulate and verify genetic
regulatory networks. liProc. of 32nd Latin-American Conference on Informatics (CLEI 202606.

[4] AVISPA Research Group. ntccSim: A simulation tool for timed concurrent processes, 2006. More information
available ahttp://avispa.puj.edu.co

[5] L. Bortolussi and A. Policriti. Modelling Biological Systems in Stochastic Concurrent Constraint Programming.
In Proc. of WCBO06 - Workshop on Constraint-Based Methods in Bioinforma06s.

[6] L. Calzone, N. Chabrier-Rivier, F. Fages, and S. Soliman. Machine learning biochemical networks from temporal
logic propertiesTransactions on Computational Systems Bio@§06. CMSB’05 Special Issue (to appear).

[7] L. Calzone, F. Fages, and S. Soliman. BIOCHAM: An Environment for Modeling Biological Systems and Formal-
izing Experimental KnowledgeBioinformatics 22:1805-1807, 2006.

[8] L. Cardelli. Brane Calculi. In Danos and Sathter|[[10], pages 257-278.
[9] V. Danos and C. Laneve. Formal molecular biologjeor. Comput. Sgi325(1):69-110, 2004.

[10] V. Danos and V. Scichter, editorsComputational Methods in Systems Biology, International Conference CMSB
2004, Paris, France, May 26-28, 2004, Revised Selected Pag#tsne 3082 o£. NCS Springer, 2005.

[11] D. Eveilllard, D. Ropers, H. de Jong, C. Branlant, and A. Bockmayr. A multi-scale constraint programming model
of alternative splicing regulatiorTheor. Comput. S¢i325(1):3-24, 2004.

[12] J. Gutérrez, J. A. Brez, C. Rueda, and F. D. Valencia. Timed Concurrent Constraint Programming for Analysing
Biological Systems. IfProc. of the Workshop on Membrane Computing and Biologically Inspired Process Calculi
(MeCBIC’06) 2006. To appear in the ENTCS (Electronic Notes in Theoretical Computer Science) series.

[13] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, Implementation, and Evaluation of the Constraint Lan-
guage cc(FD). IrConstraint Programmingvolume 910 olLNCS pages 293-316. Springer, 1994.

[14] H. Kitano, editor.Foundations of Systems BiologylIT Press, 2001.
[15] H. Kitano. Systems Biology: A Brief Overviewscience295:1662—-1664, 2002.

[16] M. Nielsen, C. Palamidessi, and F. Valencia. Temporal concurrent constraint programming: Denotation, logic and
applications.Nordic Journal of Computingd:145-188, 2002.

[17] C. Olarte and C. Rueda. A Stochastic Non-deterministic Temporal Concurrent Constraint Calcuusc. lof
International Conference of the Chilean Computer Science Society (SCCC BBE}CS, 2005.

[18] C. Olarte and C. Rueda. Using stochastic ntcc to model biological systen®sodnof the 31st Latin American
Conference on Informatics (CLEI'052005.

[19] D. Prandi, C. Priami, and P. Quaglia. Process calculi in a biological comahtetin of the EATCS-ebruary 2005.
[20] C. Priami and P. Quaglia. Beta Binders for Biological Interactions. In Danos aratB&n|[10], pages 20-33.

[21] A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Shapiro. Bioambients: an abstraction for biological
compartmentsTheor. Comput. S¢i325(1):141-167, 2004.

[22] A. Regev and E. Shapiro. Cells as ComputatiNature 419:343, September 2002.

[23] A. Regev and E. Shapirddodelling in Molecular Biologychapter Ther-calculus as an abstraction for biomolec-
ular systems, pages 219-266. Natural Computing Series. Springer, 2004.

[24] Aviv Regev, William Silverman, and Ehud Y. Shapiro. Representation and simulation of biochemical processes
using the pi-calculus process algebraPhtific Symposium on Biocomputjmmges 459—-470, 2001.

[25] V. SaraswatConcurrent Constraint Programmindhe MIT Press, 1993.

[26] V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of timed concurrent constraint progranfPnaogebh
ings, Ninth Annual IEEE Symposium on Logic in Computer Scjgrages 71-80. IEEE, 1994.

[27] V. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations of concurrent constraint programming. In
POPL '91, pages 333-352, Jan 1991.

[28] G. Scheiner-Bobis. The sodium pump: Its molecular properties and mechanics of ion traBapmrf. Biochem.
269:2424-2433, 2002.

15

http://avispa.puj.edu.co

	Introduction
	Systems Biology
	Timed Concurrent Constraint Programming
	The ntcc process calculus

	Using ntcc for Analyzing Biological Systems
	Active Transport in Cellular Membranes
	Genetic Regulatory Networks
	Modeling Biological Mutations

	Related Work
	Concluding Remarks and Future Work

