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Abstract

Systems biology aims at getting a higher-level understanding of living matter, building on the avail-
able data at the molecular level. In this field, theories and methods from computer science have proven
very useful, mainly for system modeling and simulation. Here we argue that languages based ontimed
concurrent constraint programming (timed ccp) —a well-established model for concurrency based on the
idea of partial information— have a place in systems biology. We summarize some works in which our
group has tried to assess the possibilities/limitations of one such formalisms in this domain. Our base
language isntcc, a non-deterministic, timed ccp process calculus that provides aunified frameworkfor
modeling, simulating andverifyingseveral kinds of biological systems. We discuss how the interplay of
the operational and logic perspectives thatntcc integrates greatly favors biological systems analysis.

1 Introduction

Recent years have seen an extraordinary progress in the field of molecular biology. The enormous amount
of biological data gathered in the last years has generated a paradigm shift, in which giving such data a
coherent meaning is now a growing necessity for researchers. The interest is then to identify and understand
biological functionsbuilding on the available knowledge onbasic elementssuch as proteins and genes. This
requires following asystem-level approachwhere isolated data is structured as to make up interactions that,
in turn, will constitute more complex interactions at a higher level of abstraction. This is, broadly speaking,
the goal and motivations of what it is commonly referred to assystems biology.

Process calculiare abstract specification languages in which the notions ofprocessandinteractionpre-
vail in the formalization of systems exhibiting concurrent behavior. There is a natural correspondence be-
tween the kinds of interactions provided by process calculi and those present in biological systems. The
simplicity of such correspondence has captured the attention of experts in both domains. As a matter of
fact, calculi for mobile processes have been used in the biological context (see, e.g., [24]), and new calculi
focusing on particular aspects of biological interactions have been proposed (see [19] for a survey). This
research direction is sometimes called thelanguage approachfor systems biology. Briefly, the idea consists
in defining someworking analogiesbetween both biological entities and phenomena and the elements of
the calculus. Evolution of biological systems can be then formalized by means of some (operational) se-
mantics provided by the calculus. In this context, most process calculi only offer modeling and simulation
capabilities.

Although this language approach has shed light on the nature of several biological systems, we believe
that logic-based reasoning techniques could effectively complement biological systems analysis. More pre-
cisely, we argue for process calculi based ontimed concurrent constraint programming (ccp) [27, 26] for
analyzing biological processes. Since process terms in ccp can be viewed at the same time as computing
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agents and logic formulas, it can constitute a unified framework where biological systems can be described,
simulated and alsoverified. This paper aims at supporting this claim by summarizing our initial efforts in
this direction. Our base language isntcc [16], a non-deterministic, discrete time process calculus based
on ccp. Below we elaborate on how two salient features ofntcc—the interplay of partial information and
non-determinism and its logic-based reasoning techniques— can be convenient in the biological context.

Partial informationarises naturally in the description of biological systems. Biologists usually count
with partial information obtained from experimental measurements over the systems of interest; such infor-
mation should be exploited as much as possible so that working hypothesis can be refined and, at the end,
new experiments can be better oriented [15]. In the spirit of the language approach, and from a more abstract
level, partial information can be classified asquantitativeandbehavioral. While partial quantitative infor-
mationusually involves incomplete information on thestate of the system(e.g., the set of possible values that
a variable can take),partial behavioral informationrefers to the uncertainty in the behavior of interactions
(e.g., the unknown relative speeds on which two systems interact).

These two kinds of partial information are naturally captured inntcc. On the one hand, partial quan-
titative information is captured by the notion ofconstraint system, a structure that defines logic inference
capabilities over constraints. Constraint systems areparametricto ntcc, which allows to state several kinds
of conditions by choosing the appropriate constraint system(s). On the other hand, partial behavioral infor-
mation is represented bynon-deterministicandasynchronous operatorsavailable inntcc. We shall see how
the interplay of these operators in the discrete time ofntcc allows to explicitly describe and reason about
the uncertainty in the time occurrence of many biological phenomena.

Reasoning techniquesin ntcc allow to prove whether a given processP satisfy a given propertyF , using
a linear-temporal specification logic and its corresponding proof system. The symbolic flavor conveyed
by logic-based verification can effectively complement conventional simulations when analyzing biological
systems involving partial behavioral information. In fact, conventional simulations of biological components
which, e.g., act at unknown or unpredictable times, might not faithfully reflect the possible behavior of
the system. This kind of inaccuracies could be observed in simulations independently of how powerful
simulation tools are. This is but one situation where counting with logic-based reasoning tools would come
in handy for complementing analysis of biological systems.

We shall take advantage of these features by modeling biological systems as processes and their proper-
ties as linear-temporal formulas, allin a single frameworkin which non-determinism and partial information
are essential. An additional advantage of usingntcc for the study of biological systems consists in the
possibilities of turning this theoretical framework into software tools. As a matter of fact, our group has
built ntccSim [4, 2], a simulation tool that admits the description of biological systems asntcc processes
and allows to observe their behavior over time. Formalisms, methods and tools from timed ccp therefore
constitute a real alternative for biological systems analysis.

Plan of the document Section 2 further discusses the intuitions underlying systems biology outlined
above. Section 3 introduces thentcc calculus in a biological context. Section 4 discusses some biological
systems that have been analyzed with our approach. Some related work is reviewed in Section 5. Section 6
gives some concluding remarks and proposes directions for future work.

2 Systems Biology

Recent progresses inmolecular biologyhave allowed to describe the structure of many components making
up biological systems (e.g., genes and proteins) asisolatedentities. Instead of being alone, these entities
are part of complex biological networks present at the cellular environment (such as, e.g., genetic regulatory
networks) which define and regulate cellular processes. The current challenge is to move from molecular
biology to systems biology[14, 15], in order to understand how these individual components and entities
integrateto each other in the networks they shape. Once this integration has been understood, it will be then
possible to discover how these entities perform their tasks.

Systems biology then aims at studying the mechanisms by which genes and proteins integrate and interact
among them inside an organism. That is, systems biology studies in an integrated way both the structure and
expression of a gene or a set of genes. The notions ofsystemandmultilevel interactionare crucial in this
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study. The former is justified by the need of considering the interactions within the given system, under the
assumption that components of a system are not isolated and therefore influence each other. The latter refers
to the capability of analyzing the same biological system, observing and abstracting its essential properties,
at different levels of detail.

The complexity and size of biological systems motivates the use of computational techniques that allow
to build models of these systems thatabstracttheir behavior and make their study easier. More precisely,
in a hypothesis-driven research approach [15], computing techniques are at the start of a four-stage research
cycle that is complemented by analysis, technology and genomics phases. The idea is to use computer-
based techniques to simulate biological models representing contradictory issues of biological significance.
These so-calleddry experimentsshould reveal inadequacies of the assumptions embedded in models and,
after a phase where simulation results are analyzed and theories formulated, they are the basis forwet (real)
experiments. Finally, the successful experiments will be those that eliminate inadequate models.

In this context, where the interest is torefinemodels by progressive simulations, existing languages and
formalisms from concurrency theory can be convenient. Notice that the above-described hypothesis-driven
approach heavily depends on the appropriate use of partial information in simulations. Moreover, counting
with hypothesis suggest that the use of logic methods for their analysis is reasonable. We now enter to
describe a suitable framework for carrying out this kind of analysis.

3 Timed Concurrent Constraint Programming

Here we give a concise, informal introduction tontcc, the process calculus that we have used to model
and verify biological systems. Based on [12], we focus on howntcc constructs can be convenient in the
biological context. The interested reader is referred to [16] for an in-depth presentation ofntcc.

We start by briefly discussing some basic notions of concurrent constraint programming (ccp), a well-
established formalism for concurrency which generalizes Logic Programming [25]. One of the most appeal-
ing and distinctive features of ccp is that it combines the traditionaloperationalview of process calculi with
adeclarativeone of processes based upon logic. This combination allows ccp to benefit from the large body
of techniques of both process calculi and logic.

In ccp the knowledge about the system is expressed in terms ofconstraints, or statements defining the
possible values a variable can take (e.g.,x+ y � 7). These pieces of partial information aremonotonically
accumulated in shared medium, so-calledstore. Processes (or agents) then interact with each other bytelling
andaskingconstraints to the store. They synchronize according to the information in the store.

One fundamental notion in ccp is that of aconstraint system. Informally, a constraint system provides a
signature from which constraints can be constructed, and an entailment relation which specifies the inter-de-
pendencies among them. For operational reasons, we shall require this relation to be decidable. A practical
example of a constraint system is FD [13]. In FD variables are assumed to range over finite domains and, in
addition to equality, we may have predicates that restrict the possible values of a variable to some finite set.

3.1 Thentcc process calculus

Thentcc process calculus [16] is atemporalextension of ccp. Its process constructs naturally capture the
main features of timed and reactive systems. In particular,ntcc allows to model:

� non-determinismto express diverse execution alternatives for a system from the same initial condi-
tions.

� asynchronyto represent unbounded but finite delays in the execution of a system.

� unit-delaysto explicitly model pauses in system execution.

� time-outsto express the possibility of default behavior, reasoning about the absence of information.

� synchronyto control and coordinate the concurrent execution of multiple systems.

� infinite behaviorto represent the persistent execution of a system.
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ntcc formalizes discrete, reactive computation. Inntcc, time is conceptually divided intodiscrete
intervals (or time units). In a particular time unit, a processP gets an inputc from the environment (an
item of information represented as a constraint), it executes with this input as the initial store, and when it
reaches its resting point, it outputs the resulting stored to the environment. The resting point determines a
residual processP 0, which is then executed in the next time unit. Notice that information is not automatically
transferred from one time unit to the following.

Process Syntax

In ntcc, processesP , Q, . . .2 Proc are built from constraintsc 2 C and variablesx 2 V in the underlying
constraint system by:

P;Q; : : : ::= tell(c) jP
i2Iwhen ci do Pi j P k Q j local x in P

j next (P ) j unless c nextP j ? P j !P
Below we provide some intuitions regarding the behavior ofntcc processes.

Including and Querying (Partial) Information Processtell(c), the simplest operation to expresspartial
information, includes a constraintc into the current store, thus making it available to other processes in the
same time interval.

In the biological context,tell operations allow to represent at least two kinds ofpartial information
statements: so-calledground rulesandstate definitionstatements. The first ones precisely state certain con-
ditions that apply during the life of the biological system. These conditions can easily exploit the available
(possibly incomplete) knowledge. Complementary,state definitionstatements refer to those constraints in-
tended to define the exact values for the variables in the system. This is particularly useful when one exactly
knows the set of possible states for the system at a given time; series of such statements (for different time
units) thus constitute a detailed view of the behavior of the system. Remarkably, thedeclarative flavorin
both kinds of statements could favor the definition of essential properties in (biological) models.

Guarded operationsof the formwhen c do P complementtell operations and constitute the basic
means forquerying(or asking) information about the state of a system. Intuitively, awhen c do P process
queries the current constraint store: if the guardc is present in such a store then the execution ofP is
enabled. The “presence” ofc depends on the inference capabilities associated with the store. That is, a
particular constraint could not be explicitly present in the store, but it could be inferred from the available
information. It is straightforward to interpretwhen operations as a way of expressing thepreconditionsfor
reaching a particular state of the system. The behavior of the system can be precisely stated in this way.

Non-deterministic Choices Non-determinism allows to represent several possible courses of action from
the same initial state, without providing any information on how one of such courses is selected. Inntcc,
non-deterministic behavior is obtained by generalizing processes of the formwhen c do P : a guarded-
choice summation

P
i2I when ci do Pi, whereI is a finite set of indexes, represents a process that, in

the current time interval, must non-deterministically choose one of thePj (j 2 I) whose corresponding
constraintcj is entailed by the store. The chosen alternative, if any, precludes the others. If no choice is
possible then the summation is precluded. We use

P
i2I Pi as an abbreviation for the “blind-choice” processP

i2I when true do Pi. We useskip as an abbreviation of the empty summation and “+” for binary
summations.

In the biological context, the combination of guarded choices and partial information represents an ap-
propriate mechanism to formalize the inherentunpredictabilityin system interactions. In this sense, non-
deterministic choices allows to explicitly representpartial behavioral information.

Communication ProcessP k Q represents the parallel composition ofP andQ. In one time unitP and
Q operate concurrently, “communicating” via the common store by adding and querying information. We
use
Q
i2I Pi, whereI is a finite set of indexes, to denote the parallel composition of allPi.
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Local Information In ntcc, processes of the formlocal x in P behave likeP , except that all the infor-
mation onx produced byP can only be seen byP and the information onx produced by other processes
cannot be seen byP .

Although the conventional spirit of this kind of operators is to restrict the interface through which a
process can interact with each other, in the context of partial information local information may represent
a valuable help in the analysis of systems. When performing overall analyzes of complex systems, local
variables may help to “hide” the behavior of those components that are irrelevant in the interactions to be
analyzed. The interplay of hiding and partial information may allow to analyze systems at different levels of
detail.

Basic Timed Behavior The basic time operator inntcc is next (P ), which represents the activation of
P in the next time interval. That is,next (P ) models aunit-delayof processP . It can be also considered as
the simplest way of expressing dynamic behavior over time. This is fundamental inntcc, since information
is not automaticallytransferred from one time interval to the next. Based onnext (P ), more sophisticated
delay constructs can be defined: we usenextn (P ) as an abbreviation fornext (next (: : :next (P )) : : :)),
wherenext is repeatedn times.

Absence of Information / Unexpected Behavior In the biological setting, to be able of reasoning about
absenceof information is both important and necessary. Although sometimes it is possible to predict some
of the possible future states for a system, usually there is a strong need of expressingunexpected behavior.
In this kind of scenarios, processes of the formunless c nextP may come in handy:P will be activated
only if c cannot be inferred from the current store. The “unless” processes thus add (weak) time-outs to the
calculus, i.e., they wait one time unit for a piece of informationc to be present and if it is not, they trigger
activity in the next time interval.

Asynchrony The? operator allows to express asynchronous behavior through the time intervals. Process
?P represents an arbitrary long but finite delay for the activation ofP .

This kind of asynchronous behavior therefore constitutes another instance of partial behavioral informa-
tion: in addition to the partial informationon the variablesthat are part of the state of the system (and that
can be expressed by the operators discussed above), the? operator allows to express partial informationon
the time unitswhere processes are executed. This is particularly interesting when describing (biological)
processes that interact atunknown relative speeds.

The partial information spirit of the asynchronous behavior inntcc is strengthened by the following
derived operator, expressingbounded eventuality:

?[n;m] P = nextn (P ) + nextn+1 (P ) + � � �+ nextm�1 (P ) + nextm (P ):
This temporal operator thus represents an additional amount of partial information, as it ensures thatP will
be activated at some point within the time units in the closed interval of naturals[n;m]. As in the original
operator, there is no additional information of when this restricted eventuality will take place.

Persistent Behavior Somehow opposed to the eventual behavior enforced by asynchronous behavior,per-
sistent(or infinite) behavior serves to express conditions that are valid during every possible state of the
system. Thereplicationoperator!P representsP k next (P ) k next2(P ) k : : :, i.e. unboundedly many
copies ofP but one at a time. As such, persistent behavior is an appropriate way of enforcing conditions
stating ground rules of the systems of interest. It also can also be understood as a mechanism that allows
to move fromstaticdescriptions or conditions (valid only in one state of the system) todynamicstatements
that are always valid.

As in the asynchronous case, it is possible to derive a bounded version of the persistent operator:

![n;m] P = nextn (P ) k nextn+1 (P ) k � � � k nextm�1 (P ) k nextm (P ):
This operator represents the fact thatP is always active during all the time units in the interval[n;m]. As its
eventual counterpart, this derived operator (known asbounded invariance) may come in handy when certain
additional information regarding the (persistent) execution ofP is available.
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LTELL tell(c) ` c LSUM
8i 2 I Pi ` AiP

i2I when ci do Pi ` __
i2I(ci

_̂ Ai) __ _̂
i2I _: ci

LPAR
P ` A Q ` B
P k Q ` A _̂ B

LUNL
P ` A

unless c next P ` c __�A
LREP

P ` A
!P ` �A LLOC

P ` A
local x in P ` _9x A

LSTAR
P ` A

?P ` }A LNEXT
P ` A

next (P ) ` �A LCONS
P ` A
P ` B if A _)B

Table 1: A proof system for (linear-temporal) properties ofntcc processes

A Logic Approach for Property Verification

ntcc is associated with a linear-temporal logic, which is defined as follows. FormulasA;B; : : : 2 A are
defined by the grammar:

A;B; : : : := c j A _)A j _:A j _9xA j �A j �A j }A:
Here c denotes an arbitrary constraint which acts as an atomic proposition. Symbols_), _: and _9x rep-
resent linear-temporal logic implication, negation and existential quantification. These symbols are not to
be confused with the logic symbols), : and9x of the constraint system. Symbols�, � and} denote
the linear-temporal operatorsnext, alwaysandeventually. We useA __B as an abbreviation of_:A _)B
andA _̂ B as an abbreviation of_:( _:A __ _:B). The standard interpretation structures of linear temporal
logic are infinite sequences of states. Inntcc, states are represented with constraints, thus we consider as
interpretations the elements ofC!. When� 2 C! is a model ofA, we write� j= A.

We shall say thatP satisfiesA if every infinite sequence thatP can possibly output satisfies the property
expressed byA. A relatively complete proof system for assertionsP ` A, whose intended meaning is that
P satisfies A, is given in Table 1. We shall writeP ` A if there is a derivation ofP ` A in this system.

4 Usingntcc for Analyzing Biological Systems

In this section we describe how we have applied our approach for biological systems analysis in several
kinds of systems. These include: mechanisms for active transport of substances through cellular membranes,
genetic regulatory networks (GRNs), and mutations over a GRN. We briefly comment on the nature of the
modeled systems and describe theirntcc models.

4.1 Active Transport in Cellular Membranes

In [12] we have usedntcc to model and verify anion pump, a natural channel connecting the two sides
of a membrane. These pumps move ions across the membrane in a process calledtransport. Depending
on the source of the required energy, the transport can be eitherpassiveor active. In passive transport ions
freely move across the membrane following an electrochemical gradient, so the cell does not need to provide
energy for the transport. Since in active transport ions move against the direction of the gradient, the cell has
to supply energy (usually in form of ATP) to accomplish this movement.

The Sodium-Potassium pump [28] (SP-pump in the sequel) is a system for active transport in animal
cells. It exchanges Sodium ions inside the cell with Potassium ions outside of it. The pump is composed of
two proteins known as the alpha and beta subunits. The purpose of the pump is to keep the concentration
of sodium inside the cell lower than outside. This difference of concentrations generates an electrochemical
gradient that leads the passive transport of Sodium ions towards the cytoplasm in the cell. If the pump
does not work well then the gradient becomes weak for transport, thus affecting the entrance of required
substances into the cell.
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The pumping process in the SP-pump can be divided in six phases. At the beginning there is a pump
conformation with high affinity for Sodium ions inside the cell (1). This conformation encourages the
binding of three Sodium ions with the pump. Then the alpha subunit is phosphorylated by ATP hydrolysis
(2), leaving a residual ADP molecule in the cytoplasm. This chemical reaction provides the needed energy
for the pumping process. Once this occurs, the pump conformation changes and then the Sodium ions can
leave the cell (3). At this point, there is a pump conformation with high affinity for Potassium ions outside
the cell (4). This results in the binding of two Potassium ions with the pump. Hence, the alpha subunit is
dephosphorylated (5) and the pump conformation returns to the initial state. At this moment Potassium ions
can enter the cell (6). The pumping process is always performed regulating the concentration of Sodium in
the cell.

In parallel to this active transport movement, there is apassivetransport movement that allows Potassium
and Sodium ions to move against the direction of the active transport. This complementary movement is
induced by an electrochemical gradient present in the cell.

Elements of anntcc model of the SP-pump

Here we describe the main principles underlying thentcc model of the SP-pump. We use non-deterministic
and asynchronous behavior for modeling partial behavioral information regarding temporal responses of
certain components. We use mutable entities (cells) and recursive definitions in some of our models. Cells
can be easily encoded inntcc; see [16] for more details.

The model assumes a constraint system over finite domains of integers, considering three places for
interaction: inside and outside the cell, and an intermediate place where ions stay before entering or flowing
out of the cell (i.e., the pump). The model involves a series of cells that store useful quantities about the
pumping process. We use notationsx : v andx := v to represent theinitialization and theassignmentof a
cellx with valuev, respectively. Output and input operations of the pump are then modeled as modifications
over variables representing the number of ions both inside and outside the cell. In this way, for instance,
variablesNaO andNaI represent the amount of Sodium ions placed outside and inside the cell, respectively.
In addition, a certain amount of each kind of ion needed for the correct functioning of the cell is assumed.
Such amounts are denoted byNaIDEAL andKIDEAL. Moreover, some additional variables capture other
details of the pump:OPump represents the orientation of the pump (either inside or outside the cell),Alpha
denotes the current binding of the alpha subunit andPump represents the current content of the pump. These
three variables will be instantiated with constants that can be encoded by integers: for instance, possible
values forAlpha areP, free andnull (note the special font style given to constants). Finally, integer
variablesATP andADP represent the presence of ATP and ADP inside the cell, respectively.

The complete model for the SP-pump (denoted as theNaKPump process) reflects the complementary
nature of active and passive transport in the SP-pump, and is represented by the integration ofActiveTrans
andPassiveTrans processes. From thisNaKPump process it is then possible to assume some environ-
ment in which the pump is placed. This is the intuition behind processSystem. We now proceed to explain
in a greater detail the ideas behind these processes. For the sake of space, we only include fragments of the
model; the interested reader is referred to [12] for complete details.

Active Transport Phases ProcessActiveTrans integrates sub-processes for the six phases described
before; these processes invoke each other. Some processes include recursive calls to themselves. This
intends to represent the possibility that the system remains stuck in certain phases, even if all the conditions
needed to evolve are given. That is, we are trying to model “reversible” phases, a behavior that is represented
by non-deterministic choices. As a result, those phases could be executed several times therefore delaying
system execution in at least one time unit. Such a delay occurs because the system waits for the presence of
some substances at a specific place of the pump. In fact, those substances could be available but not in the
required place. Figure 1 presents a fragment ofActiveTrans in which the phases where the Sodium leaves
out the cell are represented. ProcessNaPhase2 is the only reversible phase.

The above-described non-deterministic and asynchronous behavior could represent other conditions on
component binding, such as an appropriate physical contact among elements that (chemically) react with
components of the pump. Similarly, non-deterministic behavior can also represent some kind of malfunction.
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NaPhase1
def
= when (NaI > NaIDEAL _KI < KIDEAL) ^ Pump = Empty ^OPump = In do

(next (NaI := NaI � 3 k Pump := Na k tell(unchangedK = 1) k NaPhase2) +

next (NaPhase1 k tell(unchangedK = 1) k tell(unchangedNa = 1)))

NaPhase2
def
= when Pump = Na ^Alpha = free ^ATP > 0 do

(next (OPump := Out k Alpha := P k ADP := 1 k
tell(unchangedK = 1) k tell(unchangedNa = 1) k NaPhase3)

+ next (NaPhase2 k tell(unchangedK = 1) k tell(unchangedNa = 1)))

NaPhase3
def
= when Pump = Na ^OPump = Out do

next (NaO := NaO + 3 k Pump := Empty k tell(unchangedK = 1) k KPhase1)

Figure 1: Fragment of thentcc model for the active transport phases of the Sodium-Potassium pump

PassiveNa
def
= unless NaO = NaI next

(next5 (PassiveNa) k
?[0;5](unless unchangedNa = 1 next (NaI := NaI + 3 k NaO := NaO � 3) k

when unchangedNa = 1 do (NaI := NaI + 3 k NaO := NaO � 3)))

PassiveTrans
def
= PassiveNa k PassiveK

Figure 2: Fragment of thentcc model for the passive transport phases of the Sodium-Potassium pump

For instance, in phaseNaPhase2 the phosphate could not bind to the alpha subunit, which would result in
a malfunction of the system that could be directly observed from the evolution of the pump in time.

Passive Transport Phases Passive transport is represented by processPassiveTrans, which defines
two sub-processes: one for the entrance of Sodium ions and another for the output of Potassium ions. In
the modeling of these sub-processes we consider partial behavioral information on the actual time when the
ion movement really occurs, which is represented by a bounded asynchronous operator. Figure 2 describes
a fragment ofPassiveTrans.

Additional Processes The integration of the above processes as in theNakPump process is straightfor-
ward. There is an additional process (i.e.,Control) which governs the global behavior of the pump w.r.t.
the equilibrium of the ions amounts; in the case an equilibrium on the amount of one of the ions is reached,
a general system malfunction (denoted asdeath = 1) is established. As the other processes, the structure
of this control process makes it possible the inclusion of additional features. ProcessStart, which receives
a group of six parameters (denoted as�1:::6), sets up the variables used in the model. Figure 3 shows a
fragment of the complete model.

Remarkably, our models can be parametrized with actual quantitative values extracted from experimen-
tation. Indeed, ion concentrations depend onparameterswhich make it more accurate; more detailed models
involving other biological components (such as, e.g., the electrochemical gradients governing the dynamics
of the passive transport) would then require the inclusion of more sophisticated numerical parameters. In this
sense, considering a constraint system over real numbers would not only allow to include such parameters
but also would allow to perform analyzes at different levels of detail.

Verifying the SP-pump

We now briefly describe how a non-trivial biological property can be verified over the sketchedntcc model
of the SP-pump. Assume aninhibition processover the SP-pump that is enforced by a malicious drug that
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NaKPump
def
= local NaI ; NaO;KI ;KO; Alpha;ADP; Pump;OPump in

Start(�1:::6) k ActiveTrans k PassiveTrans k Control
System

def
= NaKPump k Environment

Figure 3: Integratedntcc model for the Sodium-Potassium pump (Fragment)

is present in the environment surrounding the pump. The goal of this drug is to take control of the alpha
subunit, thus preventing the phosphate from inducing a conformational change in the pump. Such an this
obstruction will lead to a complete inhibition of the active transport mechanism of the pump. We express
this in our model by specifying theEnvironment process as follows:

Environment def= Drug ?[m;n] when Alpha = free do !Alpha := null (n > m) (1)

It is easy to see that the actual time unit whereDrug will be active is undetermined, because of the uncer-
tainty induced by the? operator. Notice that we are focusing on the drug-related part ofEnvironment:
other aspects of it could be easily specified.

Clearly, by inhibiting the active transport component of the pump, the cell will reach an equilibrium
between the internal and external Sodium concentrations. Such anirreversibleequilibrium causes the death
of the cell and will occur in an undetermined future. These facts suggest us the following assertion to be
verified:

NaKPump k Drug ` }� death = 1 (2)

wheredeath = 1 represents the death of the cell. Intuitively, we want to formally verify that in the presence
of the drug described above the cell will die in an undetermined future, with no chance of returning to a
previous state.

In [12] we use the inference system ofntcc to derive a proof for (2). Informally, the idea is to restrict the
attention to the interaction amongControl, PassiveNa andDrug. Due to the absence of the active trans-
port mechanism the passive transport will introduce sodium ions into the cell until reaching an equilibrium
(i.e.,NaI = NaO). Once that occurs,Control (that has been awaiting the equilibrium) emitsequilNa = 1
to the environment. Such a signal is enough to determine the death of the cell.

4.2 Genetic Regulatory Networks

Here we discuss how genetic regulatory networks (GRNs) can be modeled inntcc. We propose a group of
“building blocks” for modeling: each block represents a particular behavior that is frequent in GRNs. Some
of these blocks aregeneric processesthat can be parametrized according to the specific GRN, while others
aretemplatesthat give guidelines on how to define actualntcc processes. They have been used in [3, 2] to
model and simulate regulation processes (repression and induction) of thelac operon, a genetic cluster that
participates in the the transport and metabolism of lactose in bacteria such as theE. Coli.

Building Blocks for Modeling GRNs

GRNs are one of the most studied systems, mainly because of its importance at the cellular level. They
control (or regulate) cellular processes according to the information provided by the ADN of each organism.
At the molecular level, GRNs depend on many factors which make them particularly difficult to understand.
Finding concise mathematical models describing behavior of GRNs is challenging as they are composed of
elements that can be related to both discrete and continuous systems. In spite of this, it is possible to abstract
some features that are common to GRNs at the molecular level. We now describentcc models for such
features asblocksthat might help to better formalize GRNs.
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Continuity Regulation in GRNs is determined by the concentration levels of different biological entities
along time. This motivates to consider two different kinds of continuity: persistence in the values of the
variables and continuous time.

To model persistence of a single variable it is easy to think in a processStatei that, for a variablemi,
explicitly transfers the current value ofmi to the next time unit. More precisely, the idea is, in the current
time unit, to schedule a processStatei(vi) that will set the variablem0

i (which represents the value ofmi in
the previous time unit) withvi, the current value ofmi. This idea can be extended to a group of values in a
straightforward manner:

State(�1; : : : ; �n)
def
=

Y
i2I

( tell(m0
i = �i) k next (Statei(�i)) )

whereI is the set of indexes of variables in the biological system and�i is the current value ofmi. State
can be used to configure system simulations with parameters coming from actual biological measurements.

Temporal continuity is achieved by considering manyntcc time units as “samples” of one system unit:

T imeDt(t)
def
= tell(Ts = t) k next (T ime(t+Dt))

whereTs is thecontinuoustime value of the system in the current time unit. ConstantDt represents the
resolutionof the system: it gives an idea of how fine the sampling is. As such, we can expect a trade-
off between precision and efficiency: lower values ofDt give better approximations of real continuous
systems but will demand more resources in system simulations. ProcessDynamic below can represent the
continuous behavior of the whole system.

Dynamic
def
= State(�1; :::; �n) k T imeDt(0:0)

Molecular Events Molecular systems involve several events that have to be considered, such as, e.g., the
detection of when a group of molecules interacts with others or performs a specific task. We shall use
discrete variables to indicate either presence or absence of molecular events in models. Such variables will
be calledsignaling variables. The following is a genericntcc process representing molecular behavior:

Signal
def
= !

Y
e2E; svar2S

(when e do next (tell(svar = 1)) k unless e next tell(svar = 0) )

whereE is the set of constraints expressing molecular events andS the set of signaling variables in the
system. Some readers might relate this process with an if-then-else construct. Nevertheless,Signal provides
a more sophisticated behavior as it can reason aboutabsence of informationon the conditions inE.

Regulation and status values Most of the processes used to represent dynamic behavior of biological
entities share a similar structure. They can be modeled as processes controlled by signaling variables. The
parametric processRegulatei models the behavior of an entityi which is under the control of a signaling
variablesvar. The value ofsvar determines the execution of eitherPi or Ni; this is represented as an
exclusive choice.

Regulatei(svar; Pi; Ni)
def
= when svar = 1 do Pi + when svar = 0 do Ni

To modelstatus(or level) of gene transcription, we use processStatusi below as atemplateto define a
wide variety of situations in which we want to determine particular conditions in/of a biological entity.

Statusi
def
= ! ( (

X
c2C

when condc do next (tell(mi = fci(m
0
i))) ) k unless

_
c02C

condc0 next tell(mi = m0
i) )

The above process assumes that conditions for changes in the status are indexed by the setC, so for two
differenti; j, condi andcondj are two different conditions. The new value is defined by a control function
fci. When no condition for change holds, the state of the system remains unchanged in the next time unit.
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Genes ProcessGenx below is a parametric specification representing the structure and behavior of a single
gene. It is defined using the generic processRegulatei and the templateStatusi. The considered parameters
represent the degradation and production rates of mRNAs as well as the proteins produced in the transcription
and translation of a gene. We consider three entities: level of transcription and concentration of both mRNAs
and proteins produced by the gene.

GenStatusi
def
= ! ( (when tbegin = 1 ^ tend = 0 do next (tell(mi = m0

i + 1)) +

when tbegin = 0 ^ tend = 1 do next (tell(mi = m0
i � 1)) ) k

unless tbegin 6= tend next tell(mi = m0
i) )

MRNAj(pj ; dj)
def
= Regulatej(tbegin;next (tell(mj = m0

j + pj �Dt� (dj �m0
j)));

next (tell(mj = m0
j �Dt� (dj �m0

j))))

PROTEINk(pk; dk)
def
= Regulatek(mrnah;next (tell(mk = m0

k +Dt� (pk �m0
j � dk �m0

k)));

next (tell(mk = m0
k �Dt� (dk �m0

k))))

Genx(pj ; dj ; pk; dk)
def
= GenStatusi k !MRNAj(pj ; dj) k ! PROTEINk(pk; dk)

In Genx, mi, mj andmk are variables representing the status of gene expression, mRNA concentration
and protein concentration, respectively. Moreover,dj anddk represent the rate of molecular degradation of
mRNAs and proteins, respectively. The production rate of these entities is determined by the constantspj
andpk and by two signaling variablestbegin andtend. These denote the starting and ending time of RNA
polymerase gene transcription. Signaling variablemrnah is used to indicate when the mRNA concentration
is “high enough” to start protein translation.

In order to model when RNA polymerase is placed between two genes an additional process is required.
Such a process should control when each gene starts and finishes transcription. In [3] this process is modeled
using theStatusi template.

4.3 Modeling Biological Mutations

In this example we are interested in modeling the control system of a GRN. Below we define threentcc pro-
cesses:StartControl,MutatedGene andWildGene. The first process indicates the number of molecules
interacting with the control region at the start of the study of the system. The second one defines the system
behavior under mutated conditions. The last one represents the system behavior in wild or normal condi-
tions. Variablex represents the cellular concentration of molecules interacting with the control region of the
set of genes.

StartControl
def
= tell(x = n)

MutatedGene
def
= ? ! (tell(mut = 1) k next (tell(x = fm)))

WildGene
def
= ! unless mut = 1 next tell(x = fw)

ControlRegion
def
= Start kMutatedGene kWildGene

In the above definitions, processMutatedGene establishes that a mutation will eventually occur in the gene
in an undetermined future time unit and, as a consequence, the behavior of the system will be defined by the
constraintx = fm, wherefm is a function determining an incorrect behavior in the gene control region. In
addition, processWildGene states that the behavior of the control region is represented by the constraint
x = fw unless the mutation occur (which is represented by constraintmut = 1). Functionfw represents the
behavior of the system in wild conditions. Figure 4, obtained usingntccSim, illustrates the behavior of the
system parametrized with valuen = 0.
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Figure 4: Molecular concentration in a DNA region of a mutated gene

A Complementary Proof In this section we will verify a system property using the inference system
associated withntcc. As a case of study, we will verify that when the mutation occur, variablex will be
determined only by functionfm. Formally, we wish to verify the following formula:

ControlRegion ` }�x = fm
The formulas for processesStartControl, MutatedGene andWildGene are:

StartControl ` x = n
MutatedGene ` }�(mut = 1 _̂ �x = fm)
WildGene ` �(mut = 1 __�x = fw)

StartControl ` x = n
LTELL

MutatedGene ` }�(mut = 1 _̂ �x = fm)
LRULES1

StartControl kMutatedGene ` ( x = n ) _̂ ( }�(mut = 1 _̂ �x = fm) )
LPAR

whereLRULES1 denotes the systematic application of rulesLSTAR, LREP, LPAR, LNEXT andLTELL of
the proof system over processMutatedGene. For the sake of space, we assume the following abbreviations:
SC = StartControl andMG = MutatedGene.

WildGene ` ( �(mut = 1 __�x = fw) )
LRULES2

SC kMG ` ( x = n ) _̂ ( }�(mut = 1 _̂ �x = fm) ))

WildGene k SC kMG ` ( �(mut = 1 __�x = fw) ) _̂ ( x = n ) _̂ ( }�(mut = 1 _̂ �x = fm) )
LPAR

whereLRULES2 represents the application of rulesLREP, LUNL andLTELL over processWildGene.
Finally, we can perform the following deduction:

ControlRegion ` ( � (mut = 1 __�x = fw) ) _̂ ( x = n ) _̂ ( }� (mut = 1 _̂ �x = fm) )

ControlRegion ` � (mut = 1 __�x = fw) _̂ }� (mut = 1 _̂ �x = fm)
LCONS

ControlRegion ` }� ( (mut = 1 __�x = fw) _̂ (mut = 1 _̂ �x = fm) )
LCONS

ControlRegion ` }� (mut = 1 _̂ (mut = 1 _̂ �x = fm) )
LCONS

ControlRegion ` }��x = fm
LCONS

ControlRegion ` }�x = fm
LCONS
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The above logical expression verify that the constraintx = fm will define the behavior of the system in an
undetermined future time, and that this behavior will continue forever.

We have shown how the behavior of a system can be analyzed by two formal ways: (i) by following
the steps of the operational semantics in a mechanical way, usingntccSim (Figure 4) and (ii) by verifying
temporal properties using thentcc inference system. A remarkable aspect to consider here is that it is
possible that we may not see the mutation by simulations, since this could occur in a very long time. As a
consequence, in this case the logical proof can be regarded as being more effective, as it can reveal the actual
behavior of the system.

5 Related Work

Some of the main representative calculi within the so-called language approach for systems biology are
the �-calculus [22, 23], BioAmbients [21], the Brane calculus [8], Beta binders [20] and the�-calculus
[9]. The use of these calculi as as description languages for Biology has been studied in recent years and,
as mentioned in the introduction, little work has been done on relating them with logic-based reasoning
techniques. Some of such works have explored the use of constraints and/or logic in the biological context,
see, e.g., [11,5,6,1]. Two of them ( [5,6]) are most related to our approach and deserve special mention. We
review them separately.

Stochastic CCP Stochastic CCP (sCCP) [5] is an untimed, stochastic extension of the ccp model. The
main difference wrt the original model proposed in [27] is the addition of a� function to ask and tell
operations as well as to procedure calls. The intuitive meaning of this function is twofold. In fact, it can be
understood either as a priority within a probability distribution or as the speed associated with performing
each operation. From a practical perspective, there is an interpreter of sCCP processes, built in SICStus
Prolog, that allows for simulation of biological systems.

In order to model biochemical networks, the work in [5] offers parameterizable processes to describe
reversible and irreversible reactions as well as reactions described by Michaelis-Mentel and Hill equations.
The definition of similar processes inntcc this is also possible. Moreover, to model genetic regulatory
networks, three basic processes (orlogical gates) are proposed to model regulation. More precisely, pro-
cessesposgate, neggate and null gate, intended to model positive, negative and absence of regulation,
respectively, are proposed. This kind of sCCP processes can be easily modeled inntcc.

Clearly, the use of stochastic parameters is the main difference between sCCP andntcc. We have already
started to work on equippingntcc with probabilistic/stochastic constructs (see Section 6). We feel that the
combination of probabilistic behavior with the discussed advantages ofntcc in the biological context (time,
partial information, logic reasoning techniques) will constitute a strong framework where biological systems
can be better studied.

Temporal Logic with Constraints The works [6,7] propose BIOCHAM, a biochemical abstract machine.
In BIOCHAM biological systems are modeled using a rule-based language. This approach is, according to
the authors, more natural to the biologists and well-suited for applying model checking techniques. This
is perhaps the main difference wrt our approach, as processes inntcc have a natural relationship with
the temporal logic associated to the language. Furthermore, we think that the explicit time representation
inherent tontcc can, in combination with the non-deterministic and asynchronous constructs, be intuitive
enough for experts when describing the behavior of (possibly partially known) biological systems.

Reasoning techniques include three independent semantic structures (each one with an associated logic),
which are used depending on the desired level of detail. The simplest semantics is abooleanone that
associates a boolean variable to each biological entity, with the possibility of checkingqualitativeproperties
using Computational Tree Logic (CTL). In theconcentrationsemantics each entity is associated to a real
number representing its concentration. Reaction rules are interpreted as kinetic rules and a fragment of
LTL is used for verification. Finally, in thestochasticsemantics an integer is used to model the number of
molecules of each entity in the system. Notice how for each level of abstraction there is a different meaning
for the modeling language and different verification approaches. We believe that by the appropriate use of
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constraint systems in the description of systems, analysis at several levels of detail are possible, preserving
thesame unified framework.

6 Concluding Remarks and Future Work

In this paper we have shown howntcc, a timed, non-deterministic process calculus based on constraints,
can be convenient for the analysis of different kinds of biological systems. We have seen how the interplay
of the operational and logic perspectives of processes —a distinctive feature of ccp languages— serves as
a unified framework upon which expressive models of biological systems can be described, observed and,
unlike most similar works, verified using a temporal logic.

The discussed biological systems serve to illustrate the advantages of usingntcc in the biological con-
text. In fact,ntcc allows to take advantage of the natural use ofprocessesas independent agents to model bi-
ological entities,discrete timeconstructs as flexible mechanisms to describe dynamic properties of systems,
constraintsas a way of representing incomplete information about the state of a system (i.e., partialquan-
titative information), andasynchronous and non-deterministicconstructs to formally model unpredictable
behavior in the evolution of a system (i.e., partialbehavioralinformation). Moreover, these advantages in
modeling are complemented by both practical and theoretical opportunities for simulating and verifying bi-
ological models. On the one hand, it is possible to runntcc specifications inntccSim in order to know a
possible execution path showing the behavior of a system, given a set of particular conditions (e.g., initial
number of molecules in a system). On the other hand, the use of an LTL inference system to prove temporal
properties aboutntcc models allows to discover non-trivial behavior patterns, including those encompassing
asynchronous and non-deterministic nature. This tight relationship between operational and logic reasoning
tools is rarely seen in other formalisms, even in those also based on the ccp model.

All these appealing features certainly motivate us to further work on the applications ofntcc to the
biological context. A current work direction pertains to the use of quantitative information in models of
biological systems. Particularly important is the inclusion of probabilistic/stochastic information both in
ntcc models andntccSim. We have already obtained some preliminary results. In fact, in [17] a version
of ntcc in which the signature of the constraint system is extended with a probability function is proposed.
Intuitively, the role of such a function is to return “true” or “false”, taking a real number as a parameter. This
adds a significant flexibility to process definitions, as one could devise processes that are executed depending
on the outcome of such a function. The advantages of using this extended language in the biological context
were described in [18], where cooperativity in a genetic regulation network is formally studied. Moreover,
we count with preliminary results on the design of aprobabilistic extension ofntcc with probabilistic
choice. We expect to refine these theoretical extensions by modeling, simulating and verifying more complex
biological systems than the ones analyzed so far.

From a more practical point of view, the development of efficient mechanisms for including ordinary
differential equations (ODEs) in models and simulations is also compulsory. Although we have defined
some encodings of ODEs usingntcc, we plan to implement a constraint system over ODEs in Mozart.
Such a system, in combination with the existing constraint systems over real intervals and finite domains,
will allow to take advantage of the knowledge currently held by biologists about the structure and behavior
of molecular systems, and consequently, to contribute to fill the gap that prevents computer scientists from
straightforwardly using some well studied models of biological networks.
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