
Matelas: A Predicate Calculus Common Formal

Definition for Social Networking

Nestor Catano1 and Camilo Rueda2

1 Madeira ITI
Funchal, Portugal
ncatano@uma.pt

2 Pontificia Universidad Javeriana
Cali, Colombia

crueda@cic.puj.edu.co

Abstract. This paper presents Matelas, a B predicate calculus definition
for social networking, modelling social-network content, privacy policies,
social-networks friendship relations, and how these relations effect users’
policies. The work presented in this paper is part of an ongoing work that
aims at using several formal methods tools and techniques to develop a
full-fledged social-network service implementing stipulated policies. Al-
though we employed Atelier B to write Matelas, plans are to port it to
Event B and to use Rodin to implement the social-network application.

1 Introduction

Over the past years we have experienced a huge development in Internet and
communication systems. Internet and technology have changed our lives. They
have changed the way we perceive the world, the way we build social relations,
the way we approach people, the way we are. Today, many people find easier to
share interests with people on the opposite side of the world, people who they
have never personally met, than with the neighbour from the opposite house.
Social-networks services in the form of web-sites, e.g., Facebook, Sapo, MyS-
pace, LinkedIn, Hi5, have revolutionised the way people socialise. They have
become popular tools to allow people to share common interests, and keep-up
with friends, family and business connections. Facebook, currently the dominant
service, reports 250 million active user accounts, roughly half of which include
daily activity [14]. A typical social network user profile features personal infor-
mation (e.g., gender, birthday, family situation), a continuous stream of activity
logged from actions taken on the site (such as messages sent, status updated,
games played) and media content (e.g., personal photos and videos). The privacy
and security of this information is therefore a significant concern [16]. For ex-
ample, users may upload media (such as photographs) they wish to share with
specific friends, but do not wish to be widely distributed to their network as
a whole. However, social network services have conflicting goals. Although re-
specting the privacy of their client base is important, they must also grow and
expand the connections between their users in order to be successful. This is

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 259–272, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

260 N. Catano and C. Rueda

typically achieved by exposing content to users through links such as friends-of-
friends, in which content relating to individuals known to a user’s friends (but
not the user) is revealed. Examples of this behaviour include gaining access to a
photo album of an unknown user simply because a friend is tagged in one of the
images. Back-doors also exist to facilitate casual connections such as allowing
an unknown user to gain access to profile information simply by replying to a
message he or she has sent.

We argue that mechanisms for users to enforce restricted access to content in
social network applications are urgently needed, and propose the use of formal
method techniques to build a core social network application enforcing these
policies. Formal methods are based on mathematical formalisms whereby social-
networks policies can be expressed in logic unambiguously. Formal methods make
possible the use of mathematically-based machinery to support the precise rea-
soning about the logical description of properties. The work presented in this
paper is part of an ongoing research work [12] in which social networking web-
sites (e.g. Facebook, Twitter, and Hi5) are used as a living testbed in which
formal methods [23] coupled with graph theory and Human Computer Interac-
tion (HCI) techniques are employed to develop more dependable, secure, and
crucially trustworthy social network systems. In this paper, we present Matelas1,
a predicate calculus abstract specification layer definition for social networking,
modelling social-network content, privacy policies, social-network friendship re-
lations, and how these effect the policies with regards to content and other users
in the network. Our work builds on Jean-Raymond Abrial’s “parachute strategy”
of building systems [1] in which a system is first considered from a very abstract
and simple point of view, with broad fundamental observations, and then details
are added to describe more precise behaviour of the system. As future work, we
envision to refine Matelas into a social-network core application that adheres
to stipulated policies and definitions. Hence, from our predicate calculus model
definition of social networks, a code-level model will be attained while applying
successive refinement steps.

In the following, Section 2.1 presents the context of the work presented in
this paper. Section 2.2 gives a brief introduction to the B method for software
development. Section 3 presents Matelas. Section 4 discusses related work on the
use of formal methods for social-networking, and Section 5 presents conclusions
and discusses future work and underlying challenges.

2 Preliminaries

2.1 A Formal Framework for Social Networking

The work presented in this paper is part of an ongoing research work in which
social networking web-sites are used as a living testbed in which formal methods
coupled with graph theory and Human Computer Interaction (HCI) techniques
are employed to develop more dependable, secure, and crucially trustworthy
1 Matelas is the French word for the English word mattress.

Matelas: A Predicate Calculus Common Formal Definition 261

social network systems. This ongoing work builds on the correct definition of
Matelas. We plan to refine Matelas to a social network core application that
adheres to stipulated policies [17,18]. The refined core application will serve as
a common trunk to which social network features will be plugged-in. While this
core is minimal in functionality, it will be considerably extended by incorporating
plug-ins. This will be achieved by developing a framework where the plug-ins,
written in popular programming languages such as Java or C, can demonstrate
their adherence to the policies stipulated by Matelas. This will be achieve by
using Proof Carrying Code (PCC) [20]. PCC is a technique in which a code
consumer (the social network core application) establishes a set of rules (privacy
and security policies) that guarantee that externally produced programs (the
plug-ins) can safely be run by the consumer. In addition to the code to be
executed, the code producer must provide a proof of adherence to the set of
rules defined by the code consumer. This proof is run by the code consumer
once, using a proof validator, to check whether the proof is valid and therefore
the external program is safe to execute. Hence, the problem of extending our
social network core application with plug-ins can be regarded as a producer-
consumer problem in which the code producer (the plug-in) must adhere to
security and privacy policies specified by Matelas, and as a consequence to the
policies of the social network core application.

Furthermore, while a social network application or plug-in may adhere to
stipulated policies, these policies might be insufficient to avoid human error.
While a plug-in may not access users date of birth without explicit authorisation,
it is still possible for users to inadvertently give such authorisation. This may
happen either by accident or, most likely, due to the complexity of the settings
and preferences interface that the user is asked to interact with. Hence, as part of
our whole work on social networking, we will augment our correct social network
core and plug-ins with understandable human interfaces that enable end users
to express their privacy policies and preferences, as well as to review and modify
them.

2.2 The B Method for Software Development

In the refinement calculus strategy for software development, the process of going
from a system specification to its implementation in a machine goes through a
series of stages. Each stage adds more details to the description of a system.
Each stage can thus be seen as a model of the system at a particular level of
abstraction. Models at each level serve different purposes. At higher levels models
are used to state and verify key system properties. At lower levels models are
used to implement the system behaviour. It is crucial that models at each stage
are coherent with the system specification, i.e., that the simulation obeys the
specification properties. A model Mi+1 at stage i + 1 is said to be a refinement
of a model Mi at stage i when the states computed by Mi and Mi+1 at each
given step obey a so-called “gluing invariant” stating properties for the joint
behaviour of both models. A refinement step generates proof obligations that
must be formally verified in order to assert that a model Mi+1 is indeed a

262 N. Catano and C. Rueda

refinement of a model Mi. These are sufficient conditions to guarantee that,
although at different levels of abstraction, both are models of the same system.
Correctness of the whole development process is thus ensured ([3]).

In the B method ([1], [25]) models are so-called machines composed of a static
part defining observations (variables, constants, parameters, etc) of the system
and their invariant properties, and a dynamic part defining operations changing
the state of the system. Each operation must maintain the invariant property.
In B, the language for stating properties, essentially predicate logic plus set
theory, and the language for specifying dynamic behaviour (i.e. programs) are
seamlessly integrated. A significant feature of the B system modelling approach
is the availability of automatic verification tools such as B-Tools [10], or Atelier
B [5], and model-checking simulators such as ProB [22].

A derivative of the B method is Event B [3]. Event B models are devel-
opments of discrete transition systems. They are composed of machines and
contexts. These correspond, roughly, to a B method machine whose static part
(except variables and their invariants) is transferred to a different module (the
context). B method operations are replaced in Event B machines by events. In
B method machines, operations are invoked, either by a user or by another ma-
chine, whereas in Event B, an event can be fired some condition (its guard) holds.
Three basic relations are used to structure a model. A machine sees a context
and can refine another machine. A context can extend another context. Events
have two forms, as shown in Table 1. The “when” form of event executes the
action A1 when the current value of the system variables v satisfies the guard
G1. The “any” form of event executes action A2 when there exists some value
of x satisfying the guard G2. Proof obligations require invariants to hold after
executing the actions.

Table 1. Events

any x
where

G2(x, v)
then

A2(x, v)
end

when
G1(v)

then
A1(v)

end

3 Matelas

Matelas is a B abstract specification for social networking that models social-
network content, social networks friendship relations, and privacy on content.
Privacy issues have generated a bunch of theories, and approaches [26]. Nonethe-
less, as stated by Anita L. Allen in [4], “while a no universally accepted definition
of privacy exists, definitions in which the concept of access plays a central role
have become increasingly commonplace”. Following Allen’s approach, we model

Matelas: A Predicate Calculus Common Formal Definition 263

Fig. 1. System architecture. Dashed boxes are components not yet defined

privacy with the aid of a relation that registers users’ access privileges on social-
network resources, and a content ownership relation.

Matelas distinguishes five rather independent aspects of social networks,
namely, user content and privacy issues, friendship relation in social-networks,
user content and how it is affected by friendship relations, external plug-ins,
and the user interface. At the present stage our model comprises six B (imple-
mented) components: an abstract machine, four refinements and an included
machine. We plan to refine Matelas to a social-networking core system. What
each implemented machine observes of the system is shown in Table 2. The
architecture of the core system is shown in Figure 1, with dashed boxes repre-
senting components not yet defined. The fourth refinement in Table 2 includes
the social friends machine. A first abstract model views the system as composed
of users and “raw content”, representing photos, videos, or text that a person
has in his personal page. Four relations concerning raw contents are modelled
at this level: content, visibility, ownership, and access privileges. The “content”
relation associates a person with all raw contents currently in the person’s page.

264 N. Catano and C. Rueda

Table 2. System architecture

Machine Observations

Abstraction Page content, content visibility, content ownership, access privileges
Refinement 1 Principal content, page fields
Refinement 2 Mandatory content
Refinement 3 User wall, wall visible content, wall access privileges
Social friends Friendship relations
Refinement 4 Relations between friendship, visibility and privileges

Each user owns some of the content in his page. The “visible” relation associates
a person with visible raw content. Visible raw contents are those raw contents a
user is allowed to view at some point. Only those raw contents for which a user
has “view” privilege can be visible. The “content” relation contains the “visi-
ble” relation. The “view” privilege and other types of privileges (e.g., edition of
a particular content) are defined in the access privileges relation act. Elements in
act are triplets (rc, op, pe) stating that person pe has op privilege on raw content
rc. In B language notation a triplet (a, b, c) is written a �→ b �→ c.

The owner owner(rc) of a raw content rc is unique. The following invariant
properties of the abstract model state that, (1) owner(rc) has all privileges over
rc2, (2) each raw content owned by a user is in the user’s page content, (3) a
raw content is visible for a user only when the user has “view” privilege over it,
and (4) all user’s visible raw contents are in the user’s page.

(1) ∀rc.(rc ∈ rawcontent⇒ (∀op.op ∈ OPS ⇒ (rc �→ op �→ owner(rc)) ∈ act))
(2) owner−1 ⊆ content
(3) ∀(rc, pe).(rc ∈ rawcontent ∧ pe : person⇒

((pe �→ rc) ∈ visible⇒ (rc �→ view �→ pe) ∈ act))
(4) visible ⊆ content

The abstract model defines actions (so-called “operations”) for creating, trans-
mitting, making visible, hiding, editing, commenting and removing a raw con-
tent. All these, of course, are defined so as to maintain all the invariant properties.
Code for the operation representing a user removing from his page a raw content
owned by some other user is shown in Table 3. The pre-conditions requires the
user in question not being the owner. Upper case items refer to types. Lower
case, to variables of the system. A user can only remove visible raw contents.
The SELECT clause has two cases. The first one is when the rc to be eliminated
is not the only one present in pe’s page. The second one is the opposite. Since the
web page of each person in the system must have at least one content, pe must
be deleted from the system in this case. In B notation, C � r and r � C denote
restriction of a relation r to a subset C of its domain and its range respectively.
Similarly, C �− r and r �− C denote the restriction of the domain and the range
of r to elements not belonging to C.

2 OPS is the set of privilege types in the system.

Matelas: A Predicate Calculus Common Formal Definition 265

Table 3. Operation for removing a raw content

remove rc (rc , pe) =
PRE

rc ∈ RAWCONTENT ∧ rc ∈ rawcontent ∧
pe ∈ person ∧
pe �→ rc ∈ visible ∧ pe 	= owner(rc)

THEN
SELECT pe ∈ dom(content− {pe �→ rc}) THEN

visible := visible − {pe �→ rc} ‖
content := content− {pe �→ rc} ‖
act := act− {rc �→ view �→ pe} ‖

WHEN pe 	∈ dom(content− {pe �→ rc}) THEN
visible := {pe}�− visible ‖
content := {pe}�− content ‖
act := act �− {pe} ‖
person := person− {pe}

END
END

Table 4. Operation for removing an owned raw content

remove owned rc (rc) =
PRE

rc ∈ RAWCONTENT ∧ rc ∈ rawcontent
THEN

visible := visible �− {rc} ‖
content := content �− {rc} ‖
act := ({rc} ×OPS) �− act � dom(content �− {rc}) ‖
owner := {rc} �− owner ‖
person := dom(content �− {rc})

END
END;

The operation for a user removing an owned raw content is shown in Table 4.
Notice that in this case the removed content must also be removed from all other
user’s pages (content�−{rc}). This might leave some users with no raw contents
in their pages. The persons remaining in the system must thus be recomputed
(person := dom(content �− {rc})).

The first refinement mainly adds the observation of page fields. Each content
belongs to some field. The notion of field models the fact that users perform
different actions, such as commenting, dealing with some given content. Page
fields are defined as field ∈ (rawcontent − principal) → principal. The various
raw contents of a given field are thus thought to be related (e.g. as a comment,
or as being part of a photo album) to a unique principal raw content. Remov-
ing a principal raw content entails removing all its “comment” contents in all user

266 N. Catano and C. Rueda

pages. A principal raw content can only be removed by its owner. The following
selected actions from the remove owned rc operation show this behaviour (for the
case rc ∈ principal). Expression field−1[{rc}] gives all secondary raw contents
whose primary is rc. These have to be removed together with rc.

rawcontent := rawcontent − (field−1[{rc}] ∪ {rc}) ‖
content := content �− (field−1[{rc}] ∪ {rc}) ‖
act := ({rc} × OPS) �− act � dom(content �− {rc})

The second refinement models the fact that each user page must always keep
some predefined minimum information. This is represented as a set of special
predefined contents (referred to as prawcontent) in each page that cannot be
removed. This predefined information must be present in a page before any
other content is added, as stated in the invariant property, prawcontent ⊂
rawcontent ⇒ prawcontent 	= ∅. Remove operations are refined to ensure that
all these special raw contents are always kept in a user’s page.

The third refinement models the notion of wall, common in social network sys-
tems. A wall is modelled as a relation associating a user with some raw contents
different from those in her web page: wall ∈ person ↔ rawwall ∧ (rawwall ∩
rawcontent = ∅). Each wall owner gives others some particular visibility and
access privileges to his wall. Operations for adding/removing/hiding comments
to/from the wall are included at this level.

Machine Social friends provides definitions for types of friendship relations
in social networks. The machine models acquaintance, social and best friend
relations, with operations to add/remove users to/from each type of friendship
relation of a given user. This machine is parametrised with a set modelling a type
(that of “friends”). Some invariant properties of this machine are shown below,
where id(friend) is the identity relation over friend, and ran(friendship) is
the range of the friendship relation. The third property states that a user is
not a friend of himself. The fourth one states that all friends are involved in
some friendship relation. Other friendship types are defined similarly. Notice
that friendship relations are not defined to be transitive.

friend ⊆ FRIEND
friendship ∈ friend ↔ friend
id(friend) ∩ friendship = ∅

friend = dom(friendship) ∪ ran(friendship)
best friends ∈ friend ↔ friend
best friends ⊆ friendship

The fourth refinement includes the Social friends machine. It models how ac-
cess privileges relate to friendship relations, namely, best friends, social friends,
and acquaintances. The relation best friends models the highest level of friend-
ship of people in the social network, and acquaintances the lowest. In general, a

Matelas: A Predicate Calculus Common Formal Definition 267

lower friendship level cannot have any access privilege a higher level does not also
have, as stated in the following invariant properties:

∀pe.pe ∈ dom(friendship) ⇒
∀bs.bs ∈ best friends[{pe}] ⇒

(owner−1[{pe}]× OPS) ∩ act−1[social friends[{pe}]]
⊆

(owner−1[{pe}]× OPS) ∩ act−1[{bs}]
∀pe.pe ∈ dom(friendship) ⇒
∀sf.sf ∈ social friends[{pe}] ⇒

(owner−1[{pe}]× OPS) ∩ act−1[acquaintances[{pe}]]
⊆

(owner−1[{pe}]× OPS) ∩ act−1[{sf}]

Similar properties are stated for wall access privileges. All these properties only
relate to each user’s raw contents. That is, for any rc of a given user pe (i.e.
owner−1[{pe}]), the privileges of her social friends with respect to rc cannot
include something that any pe’s best friend does not also have. In this fourth
refinement, the remove owned rc operation adds the action

restrict friends(dom(content �− {rc}))
where restrict friends is an operation of the Social friends machine restricting
the friendship relation to the supplied set (see Table 5).

Table 5. Restricting friendship relations to a supplied set

restrict friends(frs) =
PRE frs ⊆ FRIEND
THEN

friendship := frs � friendship � frs ‖
best friends := frs � best friends � frs ‖
social friends := frs � social friends � frs ‖
acquaintances := frs � acquaintances � frs ‖
friend := friend ∩ frs

END

The operations distinguish between commenting a particular raw content in
some user’s page or doing so in the wall. Commenting a wall is done as shown in
table 6. Variable wall records all contents present in each person’s wall. Variable
vinwall ⊆ wall keeps track of visible wall contents for each person, wallowner
the owner of each content in a wall and wallaccess defines, for each wall owner,
the persons allowed to comment her wall. In the operation in table 6, when a
comment is added to the wall of person ow, the added comment is put in the wall
of each person having access to the wall of ow (expression (wallaccess[{ow}] ×
{cmt})) and is also defined to be visible in those walls.

268 N. Catano and C. Rueda

Table 6. Operation for commenting in a wall

comment wall (cmt, ow, pe) =
PRE

pe ∈ person ∧ ow ∈ person
∧cmt ∈ RAWCONTENT ∧ cmt 	∈ rawcontent

THEN
SELECT ow �→ pe ∈ wallaccess ∧ cmt 	∈ rawcanvas
THEN

rawwall := rawwall ∪ {cmt} ‖
rawcanvas := rawcanvas ∪ {cmt} ‖
vinwall := vinwall ∪ (wallaccess[{ow}]× {cmt}) ‖
wall := wall ∪ (wallaccess[{ow}]× {cmt}) ‖
canvas := canvas ∪ (wallaccess[ow]× {cmt}) ‖
wallowner := wallowner ∪ {cmt �→ ow}

END
END

3.1 Publishing Content

A common operation to social-networking web-sites is publishing content to
people in the network. Publishing a social-network content rc to a user pe can
be regarded as a process of transmitting rc from the page of owner(rc) to the
page of pe. The abstract machine code for transmitting a raw content in a social-
network is shown in Table 7. The pre-condition of transmit rc requires that pe
is different than ow, and rc is not already in the page of pe. To transmit raw
content rc, the triplet rc �→ view �→ pe is added to act so as to grant the view
permission on raw content rc to user pe, and raw content rc is made visible to
pe by adding pe �→ rc to visible.

In a complementary direction, user pe can request permission to operate raw-
content rc. The abstract machine code for requesting a particular permission on
a raw content rc is shown in Table 8, where op is the permission being requested.

Table 7. Transmitting page content

transmit rc (rc , ow , pe) =
PRE
rc ∈ RAWCONTENT ∧ rc ∈ rawcontent ∧ ow ∈ person ∧
pe ∈ person ∧ ow = owner(rc) ∧
ow 	= pe ∧ pe �→ rc 	∈ content ∧ rc �→ view �→ pe 	∈ act

THEN
visible := visible ∪ pe �→ rc ‖
content := content ∪ pe �→ rc ‖
act := act ∪ rc �→ view �→ pe

END

Matelas: A Predicate Calculus Common Formal Definition 269

Operation request permission can either grant pe permission op over raw con-
tent rc, or deny the permission. If the permission is granted, rc �→ op �→ pe is
added to act, rc is added to content(pe), and the result variable res is set to
TRUE so as to communicate the success of the operation. Otherwise, when the
permission is denied, res is set to FALSE. The pre-condition of requesting a
permission requires that pe is different than owner(rc).

Table 8. Requesting Content Permissions

res ←− request permission (rc , pe , op) =
PRE
rc ∈ RAWCONTENT ∧ rc ∈ rawcontent ∧ pe ∈ person ∧
op ∈ OPS ∧ pe 	= owner(rc)

THEN
CHOICE

act := act ∪ rc �→ op �→ pe ‖
content := content ∪ pe �→ rc ‖
res := TRUE

OR
res := FALSE

END
END

4 Related Work

P3P, the Platform for Privacy Preferences (http://www.w3.org/P3P/), an effort
of the World Wide Web Consortium (W3C), encompasses a standard XML mark-
up language for expressing privacy policies so as to enable user agent tools (e.g.
Web browsers, electronic wallets, mobile phones, stand-alone applications, or
social network applications) to read them and take appropriate actions. A P3P
Policy is primary a set of boolean answers to multiple-choice questions about
name and contact information, the kind of access that is provided, the kind of
data collected, the way the collected data will be used, and whether the data will
be shared with third parties or not. Though P3P policies are precisely scoped
[13], they are not expressive enough to model general privacy properties on
content. They are not based on mathematical formalisms either, e.g., predicate
calculus, so that it is not possible to reason about the truths derivable from
policies expressed in P3P standard language.

In [7], N. Sadeh et al. develop a theory that relates expressiveness and ef-
ficiency in a domain-independent manner. Authors derive an upper bound on
the expected efficiency of a given mechanism. The expected efficiency depends
on the mechanism’s expressiveness only. Using predicate calculus to write users’
privacy policies on content improves the expressiveness of mechanisms modelling
policies. We plan to build on Sadeh et al.’s work to study how this higher ex-
pressiveness of predicate calculus based privacy policies comes down to a higher

270 N. Catano and C. Rueda

efficiency of the agent mechanisms allowing social-network users to set their
privacy preferences.

In B language the expression of temporal logic constraints is notably missing.
In [15], J. Groslambert proposes a method to verify temporal logical properties
of Event B systems. We will build on Groslambert’s work, and J-R Abrial’s work
in [2], to verify temporal logic properties about Matelas.

In [19], Vijay Saraswat et al. propose a policy language for access control,
and a policy algebra in the timed constraint programming paradigm. Based on
Saraswat’s work, we plan to extend our work on modelling privacy on content
with a relation that registers users’ access privileges on social-network content
with a relation that registers role-based access permissions on content.

5 Conclusion

We presented Matelas, a B model for social networking, describing social-network
content, privacy policies, social-networks friendship relations, and how these ef-
fect the policies with regards to content and other users in the network. We
used Atelier B [5] to write Matelas. We found the B method particularly useful
in two aspects. One is the expressivity of the generalised substitution language
that makes it possible to construct a very simple abstract model of the system,
yet containing all fundamental security and privacy properties. The second is
that proof obligations are easy to interpret as “before-after” predicates of each
operation assignments which makes it easy to discover possible errors and their
correction by just looking at the statement of the proofs. A minor drawback, at
least for this application, is that some useful operations are discovered as the
refinement process leads to more detailed components which requires to change
all previous models to include these operations as empty statements. This in-
convenience could, of course, be circumvented by using Event B. Our decision of
using the Atelier B tool to undertake the development of the social-network core
was based on the authors’ previous experience with the tool. We envision to port
Matelas machines to Event B models and to use Rodin [24] to refine Matelas so
as to produced the social-network core system.

We have a positive impression on the use of Atelier B as tool to develop
relatively complex software systems, yet have some recommendations on how
the tool can be improved. For Matelas’ abstraction, the four refinements and
the social friends machine, the B method software tool Atelier B generates 658
proof obligations. About 60% of them are discharged automatically. Most of the
others (handling up to 90% of all obligations) are discharged in Atelier B by just
doing modus ponens followed by invocation of one of the available provers. Some
proofs, especially those involving equality of assignments in abstract and concrete
machines, are somewhat tricky. We found this might be due to some limitations
of the provers for handling predicates of the form A ∨ B, for A, B complex
expressions with A false and B true, even when B is supplied as a hypothesis
and proved first or, similarly, ¬A is added as hypothesis and proved first.

The work presented in this paper is part of an ongoing work that aims at
developing a full-fledged social network core that implements stipulated privacy

Matelas: A Predicate Calculus Common Formal Definition 271

policies. To the best of our knowledge, this is the first effort on using the B
method to formally develop a social-network web-site. We plan to refine Matelas
to a social-network core, and use Proof Carrying Code [20,21] to build Java plug-
ins that extend its features. The policies for Java plug-ins can be written in JML,
which allows the use of different formal methods tools to check program correct-
ness [9,11]. JML specifications have the advantage over predicate calculus based
models in that they are close to Java, and thus are closer to average programmers.
We envisage to investigate on systematic ways B Machines can be translated into
JML specifications. Work has already been done in the other direction [8], that
is, to transform JML specifications into B machines to check the specifications
for flaws. Alternatively, plug-ins can be written in C language, and formal spec-
ifications using the ACSL (ANSI/ISO C Specification Language) specification
language [6], a JML-like specification language for C programs. Altogether, our
work falls within the scope of the Grand Challenge in “Dependable System Evo-
lution” (http://vsr.sourceforge.net/introduction.htm) set forth by the
U.K, and Tony Hoare’s Grand Challenge in Verified Software. The challenge is
to create a toolset that would guarantee that programs meet given specifications.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.-R., Mussat, L.: Introducing dynamic constraints in B. In: Bert, D. (ed.)
B 1998. LNCS, vol. 1393, pp. 83–128. Springer, Heidelberg (1998)

3. Abrial, J.R., Hallerstede, S.: Refinement, decomposition and instantiation of dis-
crete models: Application to Event-B. Fundamentae Informatica 77(1,2), 1–24
(2007)

4. Allen, A.L.: Uneasy Access: Privacy for Women in a Free Society. Rowman and
Littlefield (1988)

5. Atelier b, http://www.atelierb.eu/index_en.html
6. Baudin, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:

ANSI/ISO C specification language,
http://frama-c.cea.fr/download/-plug-indevelopmentguide.pdf

7. Benisch, M., Sadeh, N., Sandholm, T.: A theory of expressiveness in mechanisms.
In: Proceeding of the 23rd Conference on Artificial Intelligence (July 2008)

8. Bouquet, F., Dadeau, F., Julien, J.: JML2B: Checking JML specifications with B
machines. In: The 7th International B Conference, pp. 285–288 (2007)

9. Breunesse, C., Catano, N., Huisman, M., Jacobs, B.: Formal methods for smart
cards: An experience report. Science of Computer Programming 55(1-3), 53–80
(2005)

10. B Tools, http://www.b-core.com/btool.html
11. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M.,

Poll, E.: An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer (STTT) 7(3), 212–232 (2005)

12. Catano, N., Kostakos, V., Oakley, I.: Poporo: A formal framework for social net-
working. In: 3rd International Workshop on Formal Methods for Interactive Sys-
tems (FMIS), Eindhoven, The Netherlands (November 2009) (to appear)

http://www.atelierb.eu/index_en.html
http://frama-c.cea.fr/download/-plug-indevelopmentguide.pdf
http://www.b-core.com/btool.html

272 N. Catano and C. Rueda

13. Cranor, L., Lessig, L.: Web Privacy with P3p. O’Reilly & Associates, Inc., Se-
bastopol (2002)

14. Facebook’s statistics, http://www.facebook.com/press/info.php?statistics
15. Groslambert, J.: Verification of LTL on B event systems. In: Julliand, J.,

Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 109–124. Springer, Heidelberg
(2006)

16. Gross, R., Acquisti, A.: Information revelation and privacy in online social net-
works. In: Workshop on Privacy in the Electronic Society (WPES), pp. 71–80
(2005)

17. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B.,
Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196. Springer, Heidelberg
(1986)

18. Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1,
271–281 (1972)

19. Jagadeesan, R., Marrero, W., Pitcher, C., Saraswat, V.A.: Timed constraint pro-
gramming: a declarative approach to usage control. In: Proceeding of Principles
and Practice of Declarative Programming (PPDP), pp. 164–175 (2005)

20. Necula, G.C.: Proof-carrying code. In: Symposium on Principles of Programming
Languages (POPL), Paris, January 1997, p. 106119 (1997)

21. Necula, G., Lee, P.: Research on proof-carrying code for untrusted-code security.
In: Proceedings of the 1997 IEEE Symposium on Security and Privacy, p. 204
(1997)

22. ProB, http://users.ecs.soton.ac.uk/mal/systems/prob.html
23. Robinson, A., Voronkov, A.: Handbook of Automated Reasoning. MIT Press, Cam-

bridge (2001)
24. Rodin, http://www.event-b.org/platform.html
25. Schneider, S.: The B-Method: An Introduction. Palgrave (2001)
26. Schoeman, F.D.: Philosophical Dimensions of Privacy: An Anthology. Cambridge

University Press, Cambridge (1984)

http://www.facebook.com/press/info.php?statistics
http://users.ecs.soton.ac.uk/mal/systems/prob.html
http://www.event-b.org/platform.html

	Matelas: A Predicate Calculus Common Formal Definition for Social Networking
	Introduction
	Preliminaries
	A Formal Framework for Social Networking
	The B Method for Software Development

	Matelas
	Publishing Content

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

