
Implementing Semiring-Based Constraints Using
Mozart�

Alberto Delgado, Carlos Alberto Olarte, Jorge Andrés Pérez,
and Camilo Rueda

Pontificia Universidad Javeriana - Cali
{albertod, japerezp}@puj.edu.co

{caolarte, crueda}@atlas.puj.edu.co

Abstract. Although Constraint Programming (CP) is considered a use-
ful tool for tackling combinatorial problems, its lack of flexibility when
dealing with uncertainties and preferences is still a matter for research.
Several formal frameworks for soft constraints have been proposed within
the CP community: all of them seem to be theoretically solid, but few
practical implementations exist. In this paper we present an implementa-
tion for Mozart of one of these frameworks, which is based on a semiring
structure. We explain how the soft constraints constructs were adapted
to the propagation process that Mozart performs, and show how they
can be transparently integrated with current Mozart hard propagators.
Additionally, we show how over-constrained problems can be successfully
relaxed and solved, and how preferences can be added to a problem, while
keeping the formal model as a direct reference.

1 Introduction

Constraint Satisfaction Problems (CSP) have been studied for more than four
decades. Real-life problems expressed as CSPs are in general closer to the ap-
plication domain and thus simpler to understand than using other techniques.
Despite its advantages, the CSP formalism still lacks flexibility when represent-
ing some situations, such as when dealing with preferences, uncertainties and
similar notions. The need for relaxing problems such as constraints that do not
always have to be satisfied, motivated the research on Soft Constraints Satisfac-
tion Problems (SCSP) as an extension of the classical CSP. Several formal and
practical works have been proposed in this direction. All of them allow users to
find approximate solutions for a given problem, while considering all constraints
in the problem at the same time. The quality or degree of usefulness for an ap-
proximate solution is given by an overall valuation. In this paper, we focus on
the Semiring-Based Constraints, a formalism developed by Bistarelli et al [2, 7].

� This work was partially supported by the Colombian Institute for Science and Tech-
nology Development (Colciencias) under the CRISOL project (Contract No. 298-
2002).

P. Van Roy (Ed.): MOZ 2004, LNAI 3389, pp. 224–236, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Implementing Semiring-Based Constraints Using Mozart 225

This formalism adds valuations to the problem solutions and provides a mecha-
nism for choosing the best of them without implying the complete satisfaction
of all the constraints in the problem.

Several implementations of the semiring-based constraints exist. To our know-
ledge, however, most of them are based on CLP (Constraint Logic Program-
ming). These implementations include clp(FD,S) [9] which extends the clp(FD)
solver with a new data type for handling semiring operations and the semiring
extension for SICStus Prolog based on Constraint Handling Rules (CHR) [5].
In addition, there are other prototypes like [10] that propose interesting ideas
that could be applied for implementing tuple evaluation, as well as [12], where
an iterative algorithm is proposed in order to implement the abstraction scheme
for semiring-based constraints proposed in [4].

We implemented semiring-based constraints by exploiting the extension mech-
anisms that Mozart provides, in particular the Constraint Propagation Interface
(CPI) [11]. In this setting, the behavior of semiring-based constraints is imple-
mented in propagators. The system allows Mozart programmers to naturally
express soft and hard constraints in the same program. We believe this con-
servative approach is more practical for Mozart since the theoretical extension
proposed in [7] would imply changing the formal model of the language.

We tested our implementation in some known problems. Such tests were
useful to highlight some advantages of the implementation. They also provided
a valuable experimental reference that can be generalized when dealing with
over-constrained problems, or to handle both soft and hard constraints. We
identified some strategic issues that should be considered when including soft
constraints in existing CP applications. The main contribution of the paper is
to show that semiring-based constraints can be efficiently included in Mozart by
defining appropriate propagators.

This paper is structured as follows: in the next section, we introduce the
semiring-based formalism for soft constraints. Then, our propagator implemen-
tation is described, demonstrating its use in section 4. In section 5, some direc-
tions in using soft constraints are discussed, and some of the factors that influence
these directions are pointed out. Finally, we propose a set of concluding remarks
and describe some ideas for future work.

2 Semiring-Based Constraint Satisfaction Problems

In this section we briefly summarize the main definitions and properties of the
semiring framework for handling soft constraints. Further details can be found
in [2].

2.1 Semirings and c-Semirings

A semiring is a tuple 〈A, +,×, 0,1 〉 such that
– A is a set and 0, 1 ∈ A
– +, the additive operator is closed, commutative and associative. Moreover,

its unit element is 0.

226 A. Delgado et al.

– ×, the multiplicative operator, which is a closed, associative operation, such
that 1 is its unit element and 0 is its absorbing element.

– × distributes over +.

A c-semiring (for constraint semiring) is a semiring with some additional
properties: × is commutative, + is idempotent, and 1 is its absorbing element.
The idempotency of + is needed in order to define a partial ordering ≤S over the
set A, which serves to compare different elements of the semiring. Such partial
order is defined as follows: a ≤S b iff a+ b = b. Intuitively, given a ≤S b, one can
say that b is better than a. Moreover, for this order, it is possible to prove that
+ and × are monotonic, 0 is its minimum and 1 is its maximum, 〈A,≤S〉 is a
complete lattice and, that for all a, b ∈ A, a + b = lub(a, b).

2.2 Soft Constraint Systems and Problems

A constraint system is a tuple CS = 〈S, D, V 〉, where S is a semiring, D is a
finite set and V is an ordered set of variables. Given a constraint system CS =
〈S, D, V 〉, where S = (A, +,×, 0, 1), a constraint over CS is a pair 〈def, con〉,
where con ⊆ V is called the type of the constraint, and def : Dk=|con| → A
is called the value of the constraint. Therefore, a constraint specifies a set of
variables (the ones in con), and assigns an element of the semiring to each tuple
of values of these variables.

A soft constraint problem (SCSP) P over CS is a pair P = 〈C, con〉, where
C is a set of constraints over CS and con is a subset of V .

2.3 Combination and Projection for Soft Constraints

Consider any tuple of values t and two sets of variables I and I ′, with I ′ ⊆ I. t ↓I
I′ ,

denotes the tuple projection for t w.r.t. the variables in I ′. Let c1 = 〈def1, con1〉
and c2 = 〈def2, con2〉 be two constraints over CS. Then, its combination c1 ⊗c2,
is the constraint c′ = 〈def ′, con′〉, where con′ = con1 ∪ con2 and def ′(t) =
def1(t ↓con1

con′) × def2(t ↓con2
con′). Informally, the combination of two constraints

builds a new constraint which includes all the variables in both constraints. This
new constraint associates a semiring value to each tuple of domain values for all
variables. Such value is obtained by multiplying the elements associated by the
two constraints to the appropriate subtuples.

Given the constraint c = 〈def, con〉 and a subset w of con, the projection
of w over c, written c ⇓w is the constraint 〈def∗, con∗〉, where con∗ = w and
def∗(t∗) =

∑
{t|t↓con

w =t∗} def(t). Expressed in words, projection removes some
variables by associating to each tuple over the remaining variables a semiring
element. Such an element is obtained by summing the elements associated by the
original constraint to all the extensions of this tuple over the removed variables.

Note the correspondence between the combination and the multiplicative
operator as well as the one between the projection and the additive operator.

Implementing Semiring-Based Constraints Using Mozart 227

2.4 Solution of a SCSP

Given a constraint problem P = 〈C, con〉 over a constraint system CS, the
solution of P is a constraint defined as Sol(P) = (

⊗
C) ⇓con where

⊗
C is the

obvious extension of × to a set of constraints C. In words, a solution represents
the combination of all constraints in the problem; such a combination is projected
over the variables of interest. Note that the solution for a problem is also a
constraint.

Sometimes it is enough to know the best value associated with the tuples of a
solution. This is called the best level of consistency: Given an SCSP P = 〈C, con〉,
the best level of consistency for P is defined as blevel(P) = (

⊗
C) ⇓∅ . P is said

to be consistent if 0 <S blevel. In the case where blevel(P) = α, P is said to be
α-consistent.

2.5 Instances of the Framework

C-semirings including the most known variants of CSPs are listed below:

– Classic CSP: 〈{false, true},∨,∧, false, true〉
– Fuzzy CSP: 〈{x | x ∈ [0, 1]}, max, min, 0, 1〉
– Probabilistic CSP: 〈{x | x ∈ [0, 1]}, max,×, 0, 1〉
– Weighted CSP: 〈+, min,+, +∞, 0〉

In addition, it is possible to combine several c-semirings and obtain another:
given n c-semirings Si = 〈Ai, +i,×i, 0i, 1i〉, for i = 1 . . . n, let us define the
structure Comp(S1, . . . , Sn) = 〈〈A1, . . . , An〉, +,×, 〈01, . . . , 0n〉, 〈11, . . . , 1n〉〉.
Given 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 such that ai, bi ∈ Ai for i = 1, . . . , n. In
this scheme, the semiring operations can be performed in the following way:
〈a1, . . . , an〉+〈b1, . . . , bn〉 = 〈a1+1b1, . . . , an+nbn〉 and 〈a1, . . . , an〉×〈b1, . . . , bn〉
= 〈a1 ×1 b1, . . . , an ×n bn〉.

3 Implementing Semiring-Based Constraints

Frequently, applications using constraint programming need to express prefer-
ences, uncertainty and similar ideas in order to be more flexible and to support
partially “inconsistent” inputs. Mozart programmers use the FD propagators
to write procedures enforcing constraints modeling the real problem, but they
have no elegant and formal mechanism to express softness or to deal with over-
constrained inputs. Some language constructs like reified constraints [14] and
disjunctions (or) can be used to fulfill these requirements. Nevertheless, solu-
tions obtained in this way cannot be compared in a uniform way because some
of them do not satisfy the same constraints.

Our propagator-based implementation aims at integrating the previously de-
scribed c-semiring formalism into the efficient available propagator mechanisms
in Mozart. This section describes our implementation of a c-semiring based con-
straint system using the Constraint Propagation Interface (CPI) [11] and points
out some interesting advantages in using it.

228 A. Delgado et al.

3.1 Soft Propagators

Our first implementation of a c-semiring constraint system in Mozart was built
using its functional and object-oriented features. Basically, we defined some
structures representing most of the model concepts, implemented c-semiring op-
erations like constraint combination and Sol(P) over these, and finally built a
search procedure based on arc-consistency algorithms. Using this implementa-
tion defining new constraints was easy, as the user only had to write the def
function and then to combine this definition with the implemented semiring
operations.

This implementation had serious performance problems because we had to
implement our own version of some mechanisms like propagation queues and
domain definitions, instead of using those provided by Mozart (CPI). Initially,
we did not use CPI’s facilities, because a relationship between semiring opera-
tions and propagators was not clear. For example, the constraint definition for
the c-semiring formalism differs from the notion of propagation implemented in
Mozart. Indeed, the c-semiring constraint definition only expresses a function
(def) to evaluate tuples in the Cartesian product of the variable domains, while
constraints in Mozart are enforced by means of propagators that narrow values
of its associated variables.

Trying to unify both concepts, we decided to build some propagators dealing
with the semiring valuation idea. These propagators should implement the prop-
agation function (by overloading the propagate method from OZ Propagator
class) and a valuation method (def function). The propagate method must re-
move elements from the variable domain only when all the tuples with these
values have a valuation less than the minimum level of preference accepted by
the user.

3.2 Creating Soft Propagators

Soft propagators implement an efficient mechanism for handling softness in con-
straint applications, allowing transparent integration of soft constraints with
current Oz propagators (hard constraints). In this approach, if the user wants
to implement a new propagator, he/she must extend an abstract class, and deal
with some low-level language implementation issues. Our idea for solving this
drawback is to provide a wide set of soft propagators (much like in the FD sys-
tem) to build most common applications, thus minimizing programming efforts.
In the following, we first describe the basic class and procedures required to
create new soft propagators. Later, we show the set of implemented soft propa-
gators.

Semiring Class. This class implements the semiring structure and provides
the following methods:

– plus(a,b): Computes a + b
– times(a,b): Computes a × b

Implementing Semiring-Based Constraints Using Mozart 229

– max(): Returns the max ring value (1)
– min(): Returns the min ring value (0)
– lt(a,b): Tests a <s b
– decrease(u,dlevel): Returns the ring value obtained from decreasing u

times the ring value dlevel to the max value (1).

The first six functions are self explanatory. The last one allows writing propaga-
tors independently of the c-semiring selected by the user. For example, decrease
(2, 0.2) will return 0.6 (1.0 − 2 ∗ 0.2) when using the fuzzy semiring, and 0.4
(0.0 + 2 ∗ 0.2) when using the weighted semiring.

OZ Soft Propagator. This is the abstract class from which all soft propaga-
tors inherit. It inherits itself from OZ Propagator, forcing the user to implement
the propagate method as well as others like sClone and gCollect for memory
management (see [11]). Additionally, this class provides the following methods:

– setDegreeLevel: changes the Softness Degree of the propagator, making it
softer or harder (see section 3.3)

– computeValuation: Computes def(t) when all propagator variables are
singletons.

– getRingValue: Returns the overall semiring value, computed by applying
the times operator over all the c-semirings values returned by all soft prop-
agators.

– propagate: Filter function.

Before reaching the entailed state, all soft propagators must call their Com-
puteValuation method, allowing the abstract class to compute the overall semir-
ing value. The filter function must be carefully written since it must be compat-
ible with the valuation function. This implies that the propagator should only
remove inconsistent values (i.e., di ∈ dom(X) s.t. def(t) <s minLevel for all
t with t ↓X= di) and the valuation function should assign values correspond-
ing to this selection (for all t ∈ D|con|, computeV aluation ≥s minLevel). For
non-idempotent times operators, an additional check is required: when a compu-
tation space reaches stability, the overall semiring value must be better than the
minimal level of preference stated by the user (

∏
propi.ComputeV aluation ≥s

minLevel). Currently, this check is performed by the distributor using the pro-
cedure field in the generic distribution strategy specification.

Some Additional Functions. The user can invoke the following functions in
Mozart:

– {Soft.chooseRing R}: Selects the semiring R. For example,

{Soft.chooseRing fuzzy}

chooses the fuzzy c-semiring.
– {SetBLevel ML}: Changes the minimal level of preference (minLevel)

accepted by the user. For example, invoking

230 A. Delgado et al.

{Soft.chooseRing fuzzy}
{Soft.setBlevel 0.35}

makes the solver reject all solutions where the semiring value is less than
0.35. In general, all variable assignments with valuation α <S minLevel,
will be considered as inconsistent.

– {Soft.setSoftDegree Dl}: This function defines the softness degree pa-
rameter with value Dl for all the propagators created after this statement.
As the softness degree parameter is included in the state of a propagator, it
is possible to define different degrees for each propagator in a program. The
interaction of this parameter and the minLevel, makes propagators softer
or harder as explained in the next section.

– {GetValuation}: Returns the overall semiring valuation when all propaga-
tors are entailed. This is computed by applying the times semiring operator
over the valuation of each soft propagator.

3.3 Current Soft Propagators

– {Soft.lt X Y}: Asserts the constraint X < Y . This propagator “allows”
values for X equal to or greater than Y according to the softness degree. For
example, if we impose the Soft.lt propagator over two variables X and Y ,
set the softness degree to 0.4 and choose the fuzzy semiring, the valuation
criteria for all tuples ti = 〈xi, yi〉 is :

def(ti) =
{

1.0 if xi < yi

max(0.0, 1.0 − (0.4 ∗ (1.0 + xi − yi))) otherwise

Observe that a softness degree equal to 1 turns Soft.lt into the classical
LessThan propagator. Furthermore, if the minLevel parameter is fixed to
0.5, only tuples 〈xi, yi〉 where xi ≤ yi are accepted. This fact is used by the
propagator to enforce bound consistency.

– {Soft.distinct LVar}: Asserts the all different constraint over variables in
LV ar. In this case, according to the Softness Degree, the propagator allows
that some values be equal in the list (or tuple) LV ar. Consider the following
fragment of code:

Sol = sol(var: Vars value:Val)
N=4 Vars = {FD.tuple sol N 1#N-1}
{Soft.chooseRing fuzzy}
{Soft.setBlevel 0.3} {Soft.setSoftDegree 0.4}
{Soft.distinct Vars}
{FD.distribute ff Vars}
Val = {Soft.getValuation}

Here, those solutions where two variables are pairwise equal, such as 〈1, 2, 3, 1〉,
are allowed and evaluated to 0.6(1.0 − 0.4). Solutions where three or four
variables are pairwise equal such as 〈1, 1, 1, 2〉 are rejected (its valuation is
0.2 = 1.0 − 0.4 − 0.4 ≤s 0.3).

Implementing Semiring-Based Constraints Using Mozart 231

– {Soft.distance X Y RelOp Z:} Asserts |X−Y | RelOp Z constraint where
RelOp stands for the basic relational operators. The softness (or hardness)
of this constraint depends on the softness degree parameter.

– {Soft.unaryPreference X RPref}: Allows the user to express preferences
over some values in the domain of X. For example, in

X::1#5
{Soft.chooseRing fuzzy}
{Soft.setBlevel 0.4}
{Soft.unaryPreference X val(1:0.3 3:0.7 5:0.4)}

the UnaryPreference propagators will remove {1} in the first propagation
step (since 0.3 <s 0.4), and the semiring value assigned by the propagator
(ComputeValuation method) is 0.7 if X = 3, 0.4 if X = 5 and 1.0 (max)
otherwise. This propagator is not affected by the softness degree parameter.

– {Soft.nPreference LVar RPref}: Like the previous one, but this function
allows to express valuations for n-ary tuples. For example, in

[X Y]::1#4
{Soft.chooseRing fuzzy}
{Soft.setBlevel 0.4}
{Soft.nPreference [X Y] val(´1-2´:0.2 ´3-2´:0.6)}

Soft.nPreference will remove 1(resp. 2) from dom(X) (resp. dom(Y)) iff the
only value in dom(Y) (resp. dom(X)) is 2 (resp. 1) respectively. If X is
entailed to 3 and Y to 2, computeValuation will return 0.6 and 1.0 (1)
otherwise.

Summing up, this implementation adopts the formal concepts of the semiring
formalism with efficient propagation techniques in Mozart. We also provide some
useful mechanisms for expressing soft statements in constraint applications, for
example the softness degree for expressing accurate soft statements over con-
straints and the minLevel for filtering solutions obtained so far. Thus, we gain
some interesting advantages: (1) Capability of mixing soft and hard (current
Mozart FD propagators) constraints. In this case, we do not need to evaluate
the hard constraint assuming a semiring value of 1 ; (2) ability to filter unde-
sirable solutions w.r.t. a fixed parameter (minLevel) and (3) having criteria to
compare different solutions.

4 Results

Although we have not tested the c-semiring based constraint implementation
with real-life applications yet, we have run some small examples that show the
level of expressiveness and offer some ideas about performance of our system.
This section evaluates some examples, using an Intel Pentium IV CPU 1.80 GHz,
256 MB RAM computer running Mozart system 1.3 over Linux Gentoo Kernel
2.6.3.

232 A. Delgado et al.

4.1 An Over-Constrained Problem Example

We implemented a simple timetabling problem proposed in the Mozart tutorial
[14]. The problem consists of allocating conferences with some precedence and
disjoint constraints. The input for the solver is composed of:

– nbParSessions, an integer representing the maximum number of parallel ses-
sions that can be assigned.

– nbSessions, the number of conference sessions to be assigned.
– A list of before tuples 〈x, y〉 asserting that conference x must take place

before conference y
– A list of disjoint tuples 〈x, [y1, ..yn]〉 asserting that conference x must not be

in parallel with conferences y1, y2, ..., yn

The solution strategy proposed in [14] used the FD.atMost propagator to
enforce the maximum number of parallel sessions (nbParSessions), FD. < to
enforce precedence constraints and FD.’distinct’ for disjoint constraints. When
we added some new precedence constraints to the original data input, the prob-
lem became over-constrained. To solve this, we changed the LessThan (FD. <:)
propagator by our Soft.lt propagator and obtained a solution to the new input
data. Note that a slight change was necessary for solving the problem, keeping
the same initial model.

This example is interesting because by making small and well located changes,
we integrated soft and hard constraints in a consistent and efficient way. Addi-
tionally, it is possible to know when a solution is better than others by using the
plus semiring operator (recall that a is better than b iff a + b = a).

4.2 Expressing Preferences

Many real life problems include expressing preferences such as “this color is
better than that one” or “I prefer having more RAM than a faster processor”.
Implementing this kind of constraint is not easy using only hard propagators.
For example, one could try implementing those preferences using FD. <, but
usually not all user preferences can be satisfied at once. We can instead use soft
propagators expressing preferences, compare, and choose a desirable solution
according to its semiring value.

A formalism called CP-Network was proposed in [8] to reason with preference
statements. For example, given two finite domain variables A and B, the pref-
erence statement a1 � a2 � a3 expresses that the user prefers the assignment
A = a1 independently (regardless other assignments) over A = a2 and A = a3.
We also have conditional preferences such as b1 : a2 � a1 expressing that given
an assignment of b1 for B, the user prefers assigning a2 rather than a1 to A.

The user preferences can be represented by a Conditional Preference Graph
G = 〈V, A〉 where V is the set of variables and ai = 〈X, Y 〉 ∈ A iff a preference
of the form xi : y1 � y2 � ... � yn is given. In [13] a solving strategy using
the Sweighted c-semiring was proposed. We implemented a CP-Network solver
following those ideas.

Implementing Semiring-Based Constraints Using Mozart 233

The solver imposes the UnaryPreference propagator for each unconditional
preference and imposes nPreference over each conditionally preference state-
ment. For example, a customer trying to buy a car could give preferences such
as:

White � Red � Black � Green ; Hydraulic � Mechanic

Chevrolet � Renault � Mazda � Fiat � Kia ; 1600cc3 � 1300cc3 � 2300cc3

1300cc3 : Mechanic � Hydraulic

Chevrolet : Red � White � Black � Green

In this case, we created variables related to each feature (Color, Transmission,
Trademark, Capacity). Using the solver we obtained all ordered solutions (by ≤s)
in a few milliseconds (8ms). Observe that the trivial solution 〈White, Hydraulic,
Chevrolet, 1600cc3〉 taking account only the unconditional preferences does not
satisfy all the preferences (unsatisfiable using only hard constraints) but it is
still a good solution.

4.3 Avoiding Reified Constraints

Reification is the usual means in Mozart for expressing soft statements or solving
over-constrained problems. The reification of a constraint C w.r.t. a variable x
is the constraint (C ↔ x = 1) ∧ x ∈ 0#1 [14]. This new constraint is defined by
the following propagation rules: if x = 1 (resp. x = 0) is entailed by the store
then the reified propagator reduces to a propagator for C (resp. ¬C) and if the
store entails C (resp. store in inconsistent with C) then the reified propagator
tells x = 1 (resp. x = 0).

Using this approach, users can define satisfiability degrees (ai) for each rei-
fied constraint and compute Sat =

∑
ai×xi

by means of a propagator such as
FD.sumC. Sat can be maximized (or minimized) using a suitable distribution
strategy and its final value can be used to choose or reject solutions, giving some
ideas about their “quality”.

The following example shows that sometimes imposing soft constraints in-
stead of reified constraints may be useful. In particular, the semiring structure
offers well defined mechanisms for expressing softness over constraints involved
in the problem and provides an operator for choosing solutions in a consistent
way. Furthermore, we do not need to explicitly compute the valuation function
because it is implicitly computed by the overall ring valuation.

The problem consists of aligning some people for a photo [14]. Some prefer-
ences about the distance between two persons are given. The original input in
[14] turns the problem over-constrained. The solution proposed by the authors
consists in adding reified constraints asserting Sat.i = 1 ↔ |P.x − P.y| = 1,
meaning that Sat.i is equal to 1 only if the i-th preference (x wants to be be-
sides y) can be satisfied. Finally, the solver maximizes the satisfaction function∑

Sat.i implementing a two-dimensional distribution strategy.
We rewrote the script using the soft version of the distance propagator in-

stead of the reification mechanism. The soft propagator will allow distances not

234 A. Delgado et al.

necessarily equal to 1, penalizing its valuation according to the softness de-
gree parameter chosen for each propagator. The satisfiability (modeled as a dis-
tributed variable in the previous implementation) is now obtained via the overall
semiring valuation (we do not require a two-dimensional distribution strategy).
Furthermore, by stating preferences, we can fix the associated cost with a con-
dition stating that two persons must be together when they cannot be.

5 Integrating Soft Constraints into Existing Applications

Once a soft constraints implementation is available, considering its use in real
settings becomes a crucial issue centered around two basic factors:

– Modifications needed on existing constraint applications that wish to use
soft constraints.

– Agreements regarding the obtained solutions by using a soft constraints im-
plementation.

The first item is related with the cost of introducing soft constraints in an existing
application. Although soft constraints allow a more faithful representation for
constraint models, stating all or most of the constraints in a problem in terms of
soft constraints is computationally harder, because soft propagators perform less
pruning than hard ones. Consider any commercial application: the costs, in time
and money, of changing the application are huge; the performance consequences
of the soft constraints are also significant. For this reason, we consider that
adding soft constraints in real settings depends on the identification of a specific
set of constraints to be relaxed. Such a set must contain those constraints that
reflect optional or variable features of the problem. Think of any application
in operations research: constraints regarding the number of available resources
can be relaxed, since some kind of arrangements are possible in real life. On the
contrary, constraints stating mandatory conditions (such as the business rules),
cannot be replaced by their soft counterpart, because of the serious consequences
of such decisions for the final user. Moreover, this replacement (or relaxing) of
constraints is related to the second item stated above: the agreement process
derived from the approximate solutions obtained by using soft constraints.

By using soft constraints, the programmer must negotiate with the final user
those solutions that are good enough with respect to the constraints of the
problem, but does not hold for all of them. Moreover, as in the case described
before, such approximate solutions will require additional effort on the part of
the user. This implies that the programmer (and the final user) must be willing to
deal with less than satisfactory solutions as a result of the software development
process. We believe that either the process of convincing the user to accept an
approximate solution and/or the effort of the user in arranging some conditions
in its real setting, will be easier if the relaxed constraints are carefully chosen.

To make these arguments clear, remember the conference allocation example
previously described. It is possible that the precedence constraints that were
imposed by the before tuples (relaxed by using Soft.lt) were less important for

Implementing Semiring-Based Constraints Using Mozart 235

the users of the application than the disjoint constraints. This implies that
for such users, those solutions possibly not satisfying all the before constraints,
but satisfying the rest of them, are acceptable approximations. Conversely, this
also means that in that case, the disjoint constraints must always hold under
any condition.

Summing up, using the soft constraints in existing applications can be very
useful, but their inclusion must be carefully planned. Since our module for soft
constraints in Mozart can be consistently used in conjunction with the efficient,
existing hard mechanisms (the FD propagators), the main task of the program-
mer is to select and replace crucial constraints in the problem. This choice will
influence the rest of the development process, since approximated solutions (ob-
tained from a relaxed problem) can be more easily accepted by the final users
of the application if the changes and/or trade-offs he/she has to make are rea-
sonably manageable.

6 Conclusions

Our implementation offers a new alternative for dealing with over-constrained
problems in Mozart. Such problems are often modeled using reified constraints
and other constructs. The main drawback of such constructs is its lack of ex-
pressiveness. Since the number of satisfied constraints in a problem does not
necessarily reflect its quality (or its usefulness), comparing several solutions for
the same problem is not easy. On the contrary, our semiring-based implementa-
tion allows such comparison, because the resulting valuations are related to the
entire solution.

Our implementation also allows the direct interaction between hard and soft
constraints, in such a way that the hard constraints are not modeled using soft-
based constructs (by using the c-semiring instance for Classical CSP), but taking
advantage of the existent (often very efficient) hard constraints mechanisms. This
feature allows us to consider that not all the constraints in a problem should be
relaxed by soft constraints; it is important to choose a subset of the constraints
carefully, and relaxing just that subset, avoiding poor valued solutions and/or
efficiency overheads.

The semiring-based formalism has practical application for programs written
in Mozart. Existing applications can take advantage of this approach, without
changing the core of its model. Moreover, those applications that try to solve an
over-constrained problem can benefit from this relaxation alternative, since they
could obtain solutions that were previously rejected by a hard solver. We believe
that these two issues – the modifications needed in existing applications and the
solutions that can be obtained in over-constrained settings – are fundamental
when considering the industrial and commercial application of soft constraints.

6.1 Future Work

We plan to increase the number of soft propagators available for finite domain con-
straints in Mozart. This will increase the number of applications that can introduce

236 A. Delgado et al.

soft constraints in their models. We also plan to study a formal framework for prov-
ing properties of filter functions in propagators such as the one in [1, 6].

In order to include soft ideas in the distribution process, we consider that
the labeling process in [3] could be a good starting point. Other approaches,
like building a distributor that looks for those solutions that are better than
a valuation threshold, or considering as alternatives for distribution the best
valued variables could also be a subject of study in the near future.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments for
improving this paper. We are also grateful to Stefano Bistarelli for his comments
about this work.

References

1. Krzysztof R. Apt. The rough guide to constraint propagation. In Principles and
Practice of Constraint Programming, pages 1–23, 1999.

2. Stefano Bistarelli. Semirings for Soft Constraint Solving and Programming. Num-
ber 2962 in LNCS. Springer-Verlag, 2004.

3. Stefano Bistarelli, Philippe Codognet, Yan Georget, and Francesca Rossi. Labeling
and partial local consistency for soft constraint programming. Lecture Notes in
Computer Science, 1753, 2000.

4. Stefano Bistarelli, Philippe Codognet, and Francesca Rossi. Abstracting soft con-
straints: framework, properties, examples. Artif. Intell., 139(2), 2002.

5. Stefano Bistarelli, Thom Frühwirth, Michael Marte, and Francesca Rossi. Soft
constraint propagation and solving in constraint handling rules. In Proc. of the
Third Workshop on Rule-Based Constraint Reasoning and Programming, 2001.

6. Stefano Bistarelli, Rosella Gennari, and Francesca Rossi. Constraint propagation
for soft constraints: Generalization and termination conditions. In Principles and
Practice of Constraint Programming, pages 83–97, 2000.

7. Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Soft concurrent constraint
programming. In European Symposium on Programming, 2002.

8. Craig Boutilier, Ronen I. Brafman, Holger H. Hoos, and David Poole. Reasoning
with ceteris paribus preference statements. In Proc. 15th Conf. on Uncertainty in
AI, pages 71–80, 1999.

9. Yan Georget and Philippe Codognet. Compiling semiring-based constraints with
clp(fd,s). In Proceedings of CP’98, 1998.

10. Jerome Kelleher and Barry O’Sullivan. Evaluation-based semiring meta-
constraints. In Proceedings of MICAI, April 2004.

11. Tobias Muller. The Mozart Constraint Extensions Reference. Available electroni-
cally at www.mozart-oz.org, April 2004.

12. I. Pilan and F. Rossi. Abstracting soft constraints: some experimental results. In
Proc. ERCIM/Colognet workshop on CLP and constraint solving., June 2003.

13. F. Rossi, K. B. Venable, and T. Walsh. Cp-networks: semantics, complexity, ap-
proximations and extensions.

14. Christian Schulte and Gert Smolka. Finite Domain Constraint Programming in
Oz - A Tutorial. Available electronically at www.mozart-oz.org, April 2004.

	Introduction
	Semiring-Based Constraint Satisfaction Problems
	Semirings and c-Semirings
	Soft Constraint Systems and Problems
	Combination and Projection for Soft Constraints
	Solution of a SCSP
	Instances of the Framework

	Implementing Semiring-Based Constraints
	Soft Propagators
	Creating Soft Propagators
	Current Soft Propagators

	Results
	An Over-Constrained Problem Example
	Expressing Preferences
	Avoiding Reified Constraints

	Integrating Soft Constraints into Existing Applications
	Conclusions
	Future Work

