
A BDD Approach to the Feature Subscription Problem
T. Hadzic1and D. Lesaint2 and D. Mehta3 and B. O’Sullivan4 and L. Quesada5 and N. Wilson6

Abstract. Modern feature-rich telecommunications services offer
significant opportunities to human users. To make these services
more usable, facilitating personalisation is very important since it en-
hances the users’ experience considerably. However, regardless how
service providers organise their catalogues of features, they cannot
achieve complete configurability due to the existence of feature inter-
actions. Distributed Feature Composition (DFC) provides a compre-
hensive methodology, underpinned by a formal architecture model
to address this issue. In this paper we present an approach based on
using Binary Decision Diagrams (BDD) to find optimal reconfig-
urations of features when a user’s preferences violate the technical
constraints defined by a set of DFC rules. In particular, we propose
hybridizing constraint programming and standard BDD compilation
techniques in order to scale the construction of a BDD for larger size
catalogues. Our approach outperforms the standard BDD techniques
by reducing the memory requirements by as much as five orders-of-
magnitude and compiles the catalogues for which the standard tech-
niques ran out of memory.

1 Introduction
Information and communication services, from news feeds to inter-
net telephony, are playing an increasing, and potentially disruptive,
role in our lives. As a result, service providers seek to develop per-
sonalisation solutions that put customers in charge of controlling and
enriching the behaviour of their telecommunication services. An out-
come of this work is the emergence of features as fundamental prim-
itives for personalisation [Int93, Int97]. A feature is an increment
of functionality which, if activated, modifies the basic service be-
haviour, e.g., do-not-disturb, multimedia ring-back tones, call-divert-
on-busy, credit-card-calling, find-me, etc. In this context, a personal-
isation approach consists of exposing a catalogue of features to end-
users and letting them subscribe to a subset of features and sequence
them in the way they prefer. However, not all the subscriptions and
sequences are acceptable due to the possible occurrence of feature
interactions. A feature interaction is “some way in which a feature
modifies or influences the behavior of another feature in generating
the system’s overall behavior” [BCP+04]. For instance, a do-not-
disturb feature will block any incoming call and cancel the effect
of any subsequent feature subscribed by the callee. This is an unde-
sirable interaction: as shown in Figure 1, the call originating from X
will never reach the call-logging feature subscribed by Y . However,
if call-logging is sequenced before do-not-disturb then both features
will play their intended role.
1 Cork Constraint Computation Centre, UCC, Ireland, t.hadzic@4c.ucc.ie
2 British Telecommunications plc, UK, david.lesaint@bt.com
3 Cork Constraint Computation Centre, UCC, Ireland, d.mehta@4c.ucc.ie
4 Cork Constraint Computation Centre, UCC, Ireland, b.osullivan@4c.ucc.ie
5 Cork Constraint Computation Centre, UCC, Ireland, l.quesada@4c.ucc.ie
6 Cork Constraint Computation Centre, UCC, Ireland, n.wilson@4c.ucc.ie

Distributed Feature Composition (DFC) provides a comprehen-
sive methodology underpinned by a formal architecture model to ad-
dress feature interaction [JZ98]. Feature interactions can be avoided
by prescribing a set of precedence and exclusion constraints. A prece-
dence constraint, 〈fi, fj〉, between features fi and fj , means that if
a user subscribes to both fi and fj then fi must appear before fj

in the sequence. An exclusion constraint means that a user cannot
subscribe to both fi and fj simultaneously. We can therefore view
service personalisation as a problem of assisting a user to select a
subset of non-mutually excluding features that is possible to order in
a sequence such that all precedence constraints are satisfied. We will
refer to any such subset as a consistent subscription of features.

We assist a user by verifying that the set of features (s)he has sub-
scribed to are mutually consistent with respect to the set of prece-
dence and exclusion constraints of the catalogue. If the user’s choices
are inconsistent, we suggest remedial action by computing optimal
relaxations. An optimal relaxation is a most preferred subset of the
user’s choices that are consistent. Our approach is based on com-
piling all consistent subscriptions into a binary decision diagram
(BDD) [Bry86] in the offline phase (prior to user interaction). Then,
in the online phase, we efficiently compute optimal relaxations of the
user’s choices by finding shortest paths in the BDD with respect to
specially constructed edge weights.

Although the resulting BDD is small in practice, the memory
consumption during the compilation process has exponential peaks.
Therefore, the challenge is to find an approach that is scalable
for compiling a catalogue of reasonable size into a BDD (e.g.,
[BCG+05] has proposed a catalogue of 25 features). In this paper, we
present a hybrid approach that combines constraint programming and
standard BDD compilation techniques for generating BDDs. This ap-
proach easily constructs a BDD for catalogues consisting of 25 fea-
tures without any memory problems, while standard techniques run
out of memory.

In the remainder of this paper we first describe the Distributed
Feature Composition architecture in Section 2. We formalise some
notions that are relevant for the feature subscription problem in Sec-
tion 3. The necessary background for binary decision diagrams is
provided in Section 4. In Section 5 we describe our BDD-based solu-
tion approach to computing optimal subscriptions given that a BDD
is already compiled. In Section 6 we describe four techniques for

Figure 1. An example of an undesirable feature interaction.

CL
src=x
trg=z TCS

TDR

OCS

<

CL

OCS

CL <TDR

<

TDR

CFU

<TCS

<><CL

CFUTCSCL

C
A

T
A

L
O

G
U

E

X
src=x
trg=y OCS

zone of X

Y

Z

src=x
trg=y

zone of Y

src=x
trg=z

zone of Z

src=x
trg=z

CL TCSTDR TCSOCS

source sub. of X target sub. of Y target sub. of Z

S
U

B
S

C
R

IP
T

IO
N

S
Z

O
N

E
S

SOURCE REGION TARGET REGION

ROUTING

CONFIGURATION

TCS

features

feature

box types

feature
boxes

Figure 2. DFC: Catalogues, subscriptions and sessions.

compiling catalogues into BDDs. We report experimental results in
Section 7 comparing each technique, and finally, we conclude.

2 Distributed Feature Composition

This section provides an overview of the DFC architecture, its rout-
ing method and the terminology relevant to the understanding of the
feature subscription problem [Les07].

In DFC each feature is implemented by one or more modules
called feature box types (FBT). We assume in this paper that each
feature is implemented by a single FBT and we associate features
with FBTs. As shown in Figure 2, a call session between two end-
points is set up by chaining feature boxes, i.e., instances of FBTs.
The routing method decomposes the connection path into a source
and a target region and each region into zones. A source (target) zone
is a sequence of features that execute for the same source (target)
address.

The first source zone is associated with the source address encap-
sulated in the initial setup request, e.g., zone of X in Figure 2. A
change of source address in the source region, caused for instance
by an identification feature, triggers the creation of a new source
zone [ZGS04]. If no such change occurs in a source zone and the
zone cannot be expanded further, routers switch to the target re-
gion. Likewise, a change of target address in the target region, as
performed by Time-Dependent-Routing (TDR) in Figure 2, triggers
the creation of a new target zone. If no such change occurs in a target
zone and the zone cannot be expanded further (as for Z in Figure 2),
the request is sent to the final box identified by the encapsulated tar-
get address.

DFC routers are only concerned with locating feature boxes and
assembling zones into regions. They do not make decisions as to the
type of feature boxes appearing in zones or their ordering. They sim-
ply fetch this information from the feature subscriptions that are pre-
configured for each address in each region based on the catalogue
published by the service provider.

A catalogue is a set of features subject to precedence and exclu-
sion constraints. Features fall into three classes: source, target and
reversible, i.e., a subset of features that are both source and target.
Constraints are formulated by designers on pairs of source features
and pairs of target features to prevent undesirable feature interactions
in each zone. Specifically, a precedence constraint imposes a rout-

ing order between two features, as for the case of Terminating-Call-
Screening (TCS) and Call-Logging (CL) in Figure 2. An exclusion
constraint makes two features mutually exclusive, as for the case of
CL and Call-Forwarding-Unconditional (CFU) in Figure 2.

A subscription is a subset of catalogue features and a set of user
precedence constraints between features in each region. For instance,
the subscription of Y in the target region includes the user precedence
TDR≺TCS. Configuring a subscription involves selecting, parame-
terising and sequencing features in each region consistently with the
catalogue constraints and other integrity rules [JZ03]. In particular,
the source and target regions of a subscription must include the same
reversible features in inverse order, i.e. source and target regions are
not configured independently.

3 Configuring Feature Subscriptions

A catalogue is a pair 〈F, P 〉, where F is a set of features and P is
a set of precedence constraints on F . Let fi and fj be features, we
write a precedence constraint of fi before fj as 〈fi, fj〉, or alterna-
tively, pij . Note that an exclusion constraint between fi and fj can
be encoded as the pair of precedence constraints 〈fi, fj〉 and 〈fj , fi〉.

The transpose of a catalogue 〈F, P 〉 is 〈F, P T 〉 such that
∀〈fi, fj〉 ∈ F 2 : 〈fi, fj〉 ∈ P ⇔ 〈fj , fi〉 ∈ P T . In DFC
the precedence constraints between the features in the source (tar-
get) catalogue are specified with respect to the direction of the call.
For the purpose of configuration, we compose the source catalogue
〈Fs, Ps〉 and the target catalogue 〈Ft, Pt〉 into a single catalogue
〈Fc, Pc〉 ≡ 〈Fs ∪ Ft, Ps ∪ Pt

T 〉.
A catalogue 〈Fc, Pc〉 can also be seen as a directed graph by map-

ping the features in Fc to vertices and the precedence constraints in
Pc to the edges. A maximal set (with respect to inclusion) of fea-
tures of the catalogue that one can subscribe to is a set F ′c such that
(i) F ′c ⊆ Fc, (ii) the directed graph 〈F ′c, Pc↓F ′

c
〉 is acyclic and (iii)

∀f ∈ Fc − F ′c, the directed graph 〈Fc ∪ {f}, Pc↓F ′
c∪{f}〉 is cyclic.

A feature subscription S of catalogue 〈Fc, Pc〉 is a tuple
〈F, C, WF 〉, where F ⊆ Fc, C is the projection of Pc on F , i.e.,
Pc ↓F = {〈fi, fj〉 ∈ Pc : {fi, fj} ⊆ F} and WF : F → N is a
function that assigns weights to features. The value of S is defined
by Value(S) =

∑
f∈F WF (f). Note that a weight associated with

a feature signifies its importance for the user.
A feature subscription 〈F, C, WF 〉 is defined to be consistent if

and only if the directed graph 〈F, C〉 is acyclic. Determining whether
a feature subscription 〈F, C, WF 〉 is consistent or not can be checked
in O(|F |+ |C|) time by using Topological Sort [CLR90].

A relaxation of a subscription 〈F, C, WF 〉 is a subscription
〈F ′, C′, W ′

F 〉 such that F ′ ⊆ F , C′ = Pc↓F ′ , and WF ′ = WF↓F ′ .
Let S = 〈F, C, WF 〉 be an inconsistent feature subscription. A

relaxation S′ = 〈F ′, C′, W ′
F 〉 of S is maximal if S′ is consistent and

each relaxation S′′ = 〈F ′′, C′′, W ′′
F 〉 where S′′ 6= S′, F ′′ ⊇ F ′,

C′′ = Pc ↓F ′′ , and W ′′
F = WF ↓F ′′ is inconsistent. We call F ′

a maximal set of features of the subscription S. A single maximal
relaxation can be found by traversing the features in F and checking
at each time that the current feature/precedence can be added. If the
feature can be added then it is considered part of the relaxation and
the next check is performed on this basis. If not, the feature is simply
discarded. As |F | checks are performed, the overall complexity is
O((|F |) × (|F | + |C|)). However, finding the set of all maximal
relaxations is exponential [BS05].

Let RS be the set of all maximal relaxations of subscription S. We
say that S′ ∈ RS is an optimal relaxation of S if it has maximum
value amongst all maximal relaxations, i.e., if and only if there does

not exist S′′ ∈ RS such that Value(S′′) > Value(S′). Finding an
optimal relaxation is NP-Hard [LMO+07]. We shall focus on this
problem in this paper.

4 Binary Decision Diagrams
A binary decision diagram (BDD) [Bry86] is a rooted directed
acyclic graph, with vertices V and edges E ⊆ V × V , that encodes
a constraint set over some set of linearly ordered Boolean variables.
It has two terminal nodes labeled with T0 and T1. All other nodes
u ∈ V \ {T0, T1} are labeled with a variable var(u) ∈ {1, . . . , n}
and have exactly two outgoing edges: a low edge ending in node
low(u) and a high edge ending in high(u). The BDD is ordered
if variable labels along all the paths from the root to either T0 or T1

respect the ordering of the variables. Given an assignment to the vari-
ables, whether the constraint is satisfied is determined by following
a path starting at the root node and recursively following the high
edge, if the associated variable is assigned 1, and the low edge, if the
associated variable is assigned 0. The constraint set is satisfied if we
reach terminal node T1; otherwise it is violated.

Even though BDDs are worst-case exponential in the size of an
input constraint model, they are compact for many important classes
of constraints. This is because we can use reduced ordered BDDs,
where isomorphic nodes are merged and redundant nodes are elim-
inated. Two distinct nodes u and u′ are isomorphic if they are la-
beled with the same variable var(u) = var(u′) and have the same
child nodes: low(u) = low(u′) and high(u) = high(u′). Merg-
ing corresponds to deleting one of the nodes (say u′) and redirecting
all incoming edges of u′ to u. A node u is redundant if both child
nodes are the same: low(u) = high(u). Eliminating u corresponds
to deleting it, and redirecting all incoming edges to the child node.
Eliminating u introduces a long-edge that skips the variable var(u)
indicating that all assignments to skipped variables are allowed. A re-
duced ordered BDD for the conjunction of two Boolean constraints
{x1 6= x2, x3 6= x4} is shown in Figure 3. Notice how an assign-
ment x1 = 1, x2 = 1 leads to a long-edge ending in T0 and skipping
x3 and x4. This means that no matter what is assigned to x3 and x4,
when x1 = 1 and x2 = 1, the constraint is violated.

0 1

x1

x2 x2

x3

x4x4

Figure 3. Reduced OBDD for x1 6= x2 ∧ x3 6= x4

Optimisation Using BDDs. An additive objective function∑
j cj(xj) can be minimised subject to a constraint set by finding

a shortest path from the root to T1 in the corresponding BDD. If
node u and u′ have labels xk and x`, respectively, then an edge from
u to u′ has length:

cv[u, u′] = ck(v) +

l−1∑
j=k+1

min{cj(1), cj(0)}

where v = 1 if u′ = high(u) and v = 0 if u′ = low(u). If this
edge is part of a shortest path, it induces assignments to correspond-
ing variables {xk, xk+1, . . . , xl−1} such that xk = v, and for all
skipped variables xj = vj , where vj = 1 if cj(1) < cj(0), vj = 0
if cj(1) > cj(0) and vj ∈ {0, 1} otherwise.

Encoding Finite Domains. Constraints over finite-domain variables
can be compiled into a BDD by mapping finite-domain variables
into Boolean variables [Wal00]. Usually a log encoding scheme is
used where we encode each finite domain variable xi ∈ Di with
ki = dlog|Di|e Boolean variables xi

1, . . . , x
i
ki

representing digits
in binary notation. Hence, each finite value v is associated with a
unique sequence of bits (v1, . . . , vk) such that v =

∑k
i=1 2i−1vi.

5 A BDD-Based Solution Approach
Given a catalogue 〈Fc, Pc〉 with n features and m precedence rela-
tionships, we generate a Constraint Satisfaction Problem where for
each feature fi ∈ Fc we introduce two variables: a Boolean variable
si indicating whether a feature fi is selected, and an integer variable
pi ∈ {1, . . . , n} indicating the position of a feature in a sequence of
selected features. For every catalogue precedence 〈fi, fj〉 ∈ Pc, we
introduce the constraint si ∧ sj ⇒ (pi < pj).

Our solution approach is based on dividing the computational ef-
fort between two phases. In the offline phase (prior to user interac-
tion), we compile the catalogue into a BDD B (see Section 6) that
represents the conjunction of all the precedence constraints:

B =
∧

〈fi,fj〉∈Pc

(si ∧ sj ⇒ pi < pj). (1)

In the online phase, when the user-selected features F ⊆ Fc are
known, we compute optimal relaxations using efficient shortest path
algorithms, for example, Dijkstra’s shortest-path algorithm [CLR90].

An additive cost function
∑n

i=1 ci(si) is defined based on user-
selected features F , such that ci(1) = 0, ci(0) = WF (fi) if a fea-
ture fi ∈ F was selected by a user, and ci(1) = 0, ci(0) = 0
otherwise. To all Boolean variables encoding finite-domain position
variables pj we assign cost 0. A shortest path with respect to this
additive cost function induces an assignment to variables si that rep-
resents a subset of features F ′ ⊆ F . If the induced set of assignments
(s1 = v1, . . . , sn = vn) involves an assignment sj = 1 for some
feature fj not selected by a user (fj 6∈ F), we can truncate this as-
signment, i.e. set sj = 0, since this yields a compatible assignment
of the same cost. After truncating all such selections of non-user fea-
tures, we are left with an assignment representing an optimal subset
of user-selected features F ′. Once we have F ′, we can efficiently or-
der it in a way that respects all the relevant precedence constraints by
using topological sort.

Other BDD Applications. Note that once the BDD is computed and
an additive cost function is given, we can efficiently implement a
range of functionalities supporting a user choosing a desired fea-
ture subscription. For example, we can efficiently compute the set
of k best relaxations by using the algorithm presented in [NBW06];
we can assist a user to interactively configure relaxations of cost at
most k by using an approach from [HA06]; we can perform postop-
timality analysis by analysing which relaxations become available
as the maximal cost increases [HH06] and we can find a most simi-
lar/diverse relaxation using approach from [HOW07].

The main issue, regardless of which user functionality we choose
to implement, is whether we can compile the corresponding BDD B
and whether the resulting size allows for efficient online processing.

6 Compiling Feature Subscription BDDs
Generating a BDD that represents all consistent subscriptions of a
catalogue 〈Fc, Pc〉 by using a standard approach to BDD compila-
tion, would involve first constructing a BDD Bij for each precedence
constraint 〈fi, fj〉 ∈ Pc,

Bij = BDD(si ∧ sj ⇒ pi < pj),

and then conjoining all the resulting BDDs using the standard BDD
conjunction operator: B =

∧
〈fi,fj〉∈Pc

Bij . Our attempt to use this
compilation approach did not scale beyond catalogues involving 15
features as the resulting BDD had excessive memory requirements,
measuring in millions of nodes (more details are presented in Sec-
tion 7).

In the remainder of the section we therefore describe the tech-
niques we used to scale up the BDD compilation. We first enhanced
standard compilation through variable elimination of position vari-
ables pi, which reduced the size of the final BDD B from millions to
thousands of nodes. This alone did not allow us to scale beyond cat-
alogues involving more than 20 features since the size of the largest
BDD resulting from intermediate conjunctions (memory peak) was
still too large. We therefore used a BDD compilation based on con-
straint programming search which overcame this problem and helped
us scale to our designated goal of handling 25 features.

6.1 Variable Elimination Approach
Since our additive cost function does not depend on position vari-
ables, it is sufficient to execute a shortest path algorithm over a BDD:

Bs ≡ ∃p1,...,pn

 ∧
〈fi,fj〉∈Pc

(si ∧ sj ⇒ pi < pj)

 (2)

that represents a projection of B onto the si variables. In order to
handle models where generating the original BDD B is not possible,
we cannot compile Bs by first computing B and then eliminating
the pi variables. Instead, we have to eliminate the pi variables dur-
ing the conjunction of BDDs Bij as soon as it is detected that they
do not occur in the remaining constraints that are to be conjoined.
We used a particular conjunction heuristic, where for each feature fi

we conjoined all the BDDs involving si and pi, and afterwards elim-
inated pi through the standard BDD operation of existential quan-
tification [MT98]. Figure 4 shows the algorithm implementing this
conjunction heuristic, and Figure 5 compares variable elimination
against the standard approach by showing the size of BDDs in inter-
mediate conjunction steps.

6.2 Constraint Programming Approach
Even though the final BDDs generated using the variable elimination
approach were remarkably small, the BDDs resulting from interme-
diate conjunction steps were too big to allow scaling beyond cata-
logues involving more than 20 features. We observed, however, that
the set of all maximal sets of features, Fmax, of the underlying cat-
alogue 〈Fc, Pc〉 was no more than a few thousand, i.e. significantly
smaller than in the worst case (|Fmax| � 2|Fc|). We also observed
that in order to construct a BDD Bs that represents all the consistent
subsets of Fc (not necessarily maximal), it is sufficient to add the
powerset of Fmax for all Fmax ∈ Fmax. Each powerset is repre-
sented by

∧
fi∈Fc−Fmax

¬si, where Fc − Fmax denotes those fea-
tures that are not part of the maximal set of features of the catalogue.

Function compile(Fc, Pc)
B ← T1

for fi ∈ Fc

Bi ← T1

for 〈fi, fj〉 ∈ Pc : Bi ← Bi ∧Bij

for 〈fj , fi〉 ∈ Pc : Bi ← Bi ∧Bji

B ← ∃pi(B ∧Bi)
return B

Figure 4. A variable elimination approach to offline compilation of a BDD
representing the catalogue (Fc, Pc). We initialize B to tautology (terminal

T1) and for each feature fi we generate a BDD Bi representing the
conjunction of all remaining constraints involving si and pi. We then

existentially quantify pi from conjunction B ∧Bi as it does not appear in
remaining precedence constraints. The order in which features fi ∈ Fc are

considered is not necessarily lexicographical.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30 35 40 45

BD
D

 s
iz

e

compilation steps

standard approach
variable elimination approach

Figure 5. Intermediate memory requirements for the standard and variable
elimination approach for a catalogue with 15 features and 42 constraints.

Hence, it holds that:

Bs ≡
∨

Fmax∈Fmax

 ∧
fi∈Fc−Fmax

¬si

 . (3)

This led us to consider a constraint programming (CP) approach
where we find all the maximal sets of features Fmax through CP-
based search and then generate Bs using (3). The advantage of this
approach is that our memory consumption is linear in the number
of maximal sets of features represented by the final BDD. The com-
plexity of finding all maximal sets of features of the catalogue is
worst-case exponential, but this needs to be done only once.

BDD for Maximal Sets of Features. We also considered what we
call a CP-max approach, where we construct the BDD Bmax

s that
represents exactly the maximal sets of features Fmax:

Bmax
s ≡

∨
Fmax∈Fmax

 ∧
fi∈Fmax

si ∧
∧

fj∈Fc−Fmax

¬sj

 . (4)

Notice that any maximal set F ′ of the feature subscription
〈F, C, WF 〉 is a subset of at least one of the maximal set of fea-
tures Fmax ∈ Fmax. Therefore, it is still possible to find an opti-
mal relaxation F ′ ⊆ F of user-selected features F ⊆ Fc by using
the same approach as in Section 5: we define the objective function∑n

i=1 ci(si), and an optimal relaxation is obtained using the shortest
path by truncating non-user features fj 6∈ F .

Table 1. Comparison of different compilation approaches. For each catalogue 〈Fc, Pc〉 the leftmost column indicates the number of features and precedences
〈nc, mc〉. It also indicates the number of maximal sets of features (#max-rel), i.e., the maximal subsets of Fc that still yield a consistent subscription. For each
approach we show the size of the final BDD (#nodes) and the maximum number of intermediate nodes during compilation (#max-nodes). For the standard and

variable elimination approaches that did not compile all the catalogues, the number of instances solved (#solved) is also shown.

Standard Variable elimination CP CP-max
catalogue #max-rel #nodes #max-nodes #solved #nodes #max-nodes #solved #nodes #max-nodes #nodes #max-nodes
〈5, 4〉 1 150 150 5 1 28 5 0 0 5 5

〈10, 18〉 4 62,147 62,147 5 7 3,497 5 6 7 17 17
〈15, 42〉 59 11,965,178 13,182,339 5 81 376,206 5 103 136 148 148
〈20, 76〉 470 - - 0 654 17,306,609 3 766 1,060 954 954
〈25, 120〉 3,376 - - 0 - - 0 5,863 7,134 5,768 5,771

7 Experimental Evaluation
We compared the performance of different compilation approaches
discussed in the previous sections: a standard approach that gener-
ates the BDD B from Equation (1), a variable elimination approach
that generates projection Bs from Equation (2), a CP approach gen-
erating Bs based on Equation (3), and a CP-max approach generat-
ing Bmax

s based on Equation (4).
We generated and experimented with a variety of random cata-

logues 〈nc, dc〉 where nc is the number of features, dc ∈ [0, 1] is the
density of the precedence constraints, i.e. it denotes the percentage
of the maximum number of constraints that are selected. A random
catalogue is generated by selecting mc = bdc×nc(nc−1)/2c pairs
of features. For each selected pair 〈fi, fj〉 we randomly decide with
equal probability whether fi ≺ fj or fj ≺ fi. In our experiments we
let nc ∈ {5, 10, 15, 20, 25} and dc ∈ {0.1, 0.2, 0.4, 0.6, 0.7}. For
each combination of nc and fc we generated five random catalogues.

For each approach we tried several variable ordering heuristics and
selected those with the best performance. For the first two approaches
we put variables appearing in the larger number of constraints higher
in the ordering. For the CP and CP-max approaches a variable cor-
responding to a feature that is included in fewer maximal relaxations
was put higher in the ordering.

Table 1 summarises the results for a subset of instances with den-
sity dc = 0.4. We can see that the CP and CP-max approaches dra-
matically outperform the standard and variable elimination compila-
tion approach as they reduce the memory peak by several orders of
magnitude. Furthermore, the time required by these approaches was
not excessive. In our experience it never exceeded one hour of com-
putation time (on a machine with a 1.8 GHz processor and 768 MB
of RAM). This was comparable to the time required by the first two
approaches.

8 Conclusions
In this paper we presented an approach for solving a feature sub-
scription problem by first compiling all consistent sets of catalogue
features into a BDD in the offline phase, which then allows for an ef-
ficient computation of the optimal consistent subset of user selected
features in the online phase. We addressed the key computational
issue of compiling corresponding BDDs by investigating four alter-
native compilation techniques. In particular, we suggested two com-
pilation approaches based on constraint programming which reduce
the memory peak by several orders-of-magnitude. As a result, we
easily reached our target of handling catalogues of 25 features.

9 Acknowledgements
This material is based upon works supported by the Science Founda-
tion Ireland under Grant No. 05/IN/I886, and Embark Post Doctoral
Fellowships No. CT1080049908 and No. CT1080049909.

REFERENCES
[BCG+05] Gregory W. Bond, Eric Cheung, Healfdene Goguen, Kar-

rie J. Hanson, Don Henderson, Gerald M. Karam, K. Hal
Purdy, Thomas M. Smith, and Pamela Zave. Experience with
component-based development of a telecommunication service.
In CBSE, pages 298–305, 2005.

[BCP+04] Gregory W. Bond, Eric Cheung, Hal Purdy, Pamela Zave,
and Christopher Ramming. An Open Architecture for Next-
Generation Telecommunication Services. ACM Transactions on
Internet Technology, 4(1):83–123, 2004.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, 1986.

[BS05] James Bailey and Peter J. Stuckey. Discovery of minimal un-
satisfiable subsets of constraints using hitting set dualization. In
PADL 2005 Proceedings, pages 174 – 186, 2005.

[CLR90] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algo-
rithms. The MIT Press, 1990.

[HA06] Tarik Hadzic and Henrik Reif Andersen. A BDD-based Poly-
time Algorithm for Cost-Bounded Interactive Configuration. In
Proceedings of AAAI’06, 2006.

[HH06] Tarik Hadzic and John Hooker. Postoptimality analysis for inte-
ger programming using binary decision diagrams. In Proceed-
ings of GICOLAG workshop, Viena, 2006.

[HOW07] Emmanuel Hebrard, Barry O’Sullivan, and Toby Walsh. Dis-
tance constraints in constraint satisfaction. In Manuela M.
Veloso, editor, IJCAI, pages 106–111, 2007.

[Int93] International Telecommunication Union. Introduction to Intelli-
gent Network Capability Set 1. Recommendation Q.1211, ITU,
Geneva, Switzerland, March 1993.

[Int97] International Telecommunication Union. Introduction to Intelli-
gent Network Capability Set 2. Recommendation Q.1221, ITU,
Geneva, Switzerland, September 1997.

[JZ98] Michael Jackson and Pamela Zave. Distributed Feature Compo-
sition: a Virtual Architecture for Telecommunications Services.
IEEE TSE, 24(10):831–847, October 1998.

[JZ03] Michael Jackson and Pamela Zave. The DFC Manual. AT&T,
November 2003.

[Les07] David Lesaint. A configuration logic for telecommunication
services: Part 1. Technical report, BT Research and Venturing,
2007.

[LMO+07] David Lesaint, Deepak Mehta, Barry O’Sullivan, Luis Quesada,
and Nic Wilson. A Constraint-Based System for the Configu-
ration of Subscriptions to Feature-Based Telecommunications
Services. Patent report, BT, Ipswich, UK, December 2007.

[MT98] C. Meinel and T. Theobald. Algorithms and Data Structures in
VLSI Design. Springer, 1998.

[NBW06] Ross Nicholson, Derek Bridge, and Nic Wilson. Decision di-
agrams: Fast and flexible support for case retrieval and recom-
mendation. In Proceedings of Eighth European Conference on
Case-Based Reasoning (ECCBR 2006), 2006.

[Wal00] Toby Walsh. SAT v CSP. In Rina Dechter, editor, CP, Lecture
Notes in Computer Science, pages 441–456, 2000.

[ZGS04] Pamela Zave, Healfdene Goguen, and Thomas M. Smith. Com-
ponent Coordination: a Telecommunication Case Study. Com-
puter Networks, 45(5):645–664, August 2004.

