OpenMusic for Linux and MacOS X

Gerardo M. Sarria M. and Jose Fernando Diago

Free Software and Music Representation Teams
IRCAM
Paris, France

Universidad Javeriana-Cali
Cali, Colombia

This document describes the development of the OpenMusic (OM) port
to Linux and MacOS X. We begin explaining the main characteristics of
OM, then we show the changes made for each platform (for Linux was
chosen the compiler CMUCL and Gtk+ as graphical interface, and for
MacOS X the new version 5.0 of MCL was enough for OM to be ported)
and we finished with some conclusions and considerations for future work.

Key Words: OpenMusic, Linux, MacOS X, Computer-aided composition

0. INTRODUCTION

A computer application is often conceived to serve as a tool for users that may
need it, but it”s also a dependant entity: It depends on the type of computer, the
operating system and sometimes on other applications and/or libraries.

OpenMusic (OM) is a visual programming environment for computer-aided com-
position. It was originally developed under MacOS 9.x using Digitools MCL (a com-
mercial Common Lisp compiler). MCL provides many advantages under MacOS
including direct access to the Macintosh GUI, and some libraries inherited from its
predecessor (Coral Common Lisp). These advantages were fully exploited during
OM?”s original development, but they represent a clear dependency on the compiler
and the operating system.

The OM source code has been released under the GPL, which allows porting the
application under different operating systems and compilers. Linux was a perfect
choice for the port, because it provides the user and the developer not only with a
free operating system, but also with plenty of free development tools and libraries.
The port to MacOS X was planned afterwards, since the original source code and
compiler where MacOS 9.x dependant.

The aim of this paper is to present the strategy followed during the port, be-
ginning with a brief explanation about how OM was originally designed and de-
veloped, following by explaining some basic details of implementation under Linux
and MacOS X, and finally giving some conclusions and considerations for future
work and, possibly, new ports.



1. OPENMUSIC

OM was developed on top of Common Lisp, as a graphic interface to this lan-
guage, thus the user can develop programs (called patches in OM) using any
common lisp function and/or library, specially developed libraries and editors for
computer-aided composition, constrain solving libraries, etc.

As you can see in [6], the OM main directory contains 5 principal folders:

e Build-image: Contains the files and resources used to make an image of OM.

e Code: In this folder are placed the sources of the OM.

e Image: This folder contains the OM image, the init file and some shared li-
braries.

e User Library: User Libraries must be placed in this folder.

e WorkSpaces: OM looks for the User”s workspaces in this folder by default.

The OM implementation is divided in two parts: The kernel and the projects. In
the code folder, there is two subfolders containing these parts of OM. In the kernel
are defined the classes and methods for the language meta-objects (i.e. OMPatch,
OMClass, OMBox, etc.), the way to visualisaze these meta-objects, either as simple
icons or as container, and the graphic manipulation for creating or modifying the
meta-objects. The projects are specialized set of classes and methods directly
written in Common-Lisp. There exist three projects in OM: the BasicProject,
the MusicProject and the ConstraintProject. The OM structure starting from the
CLOS implementation can be viewed in the figure 1 (taked from [6]).

PROJECTS

KERNEL

CLOS

FIGURE 1

The code was developed in a certain way that takes full advantage of the original
compiler, which means using specific MCL libraries for writing not only the GUI,
but also some not graphic code. To develop an initial strategy for the port, the code
had to be explored and understood; OM has a basic class hierarchy, which is de-
scribed in the figure 2 (adapted from [6] using the Rumbaugh visual representation
[13)).

The implementation of these basic classes has no graphical code, however, many
of these classes use MCL dependant code such as points, the menu, the events and
access to the system and the resources.

The basic class hierarchy for the graphical part is described in the figure 3
(adapted from [6]).



/\
OMBasicObject

/\
OMPersistantObject

‘ OM PersistantFolder ‘ ‘ OMInstance ‘ ‘ OMPatch ‘ ‘ OMClass ‘ ‘ OMMethod
‘ OMFolder ‘ ‘ OMPackage ‘ ‘ OMMaquette ‘ ‘ OM StandardClass ‘

OMWorkSpace

FIGURE 2

The implementation of these classes is tightly integrated with MCL in two ways:
First, the implementation itself followed the MCL graphic class model (an MVC-like
model. It divides a window into views and subviews, links these views with model
objects etc.), and second, the code which describes logical operations between these
classes (events, drag & drop, etc.), was implemented using the same class model.
After getting to know the code, a final conclusion arrived: The only way to separate
the code into its logical part and its system specific part (system access, GUI) was
a complete redesign of the whole application. Since the aim was to do the port in
a short-time period, instead of redesigning the application it was chosen to adapt
the existing code.

2. OM FOR LINUX

The Linux port started with two basic facts given by the original OM code: A
free GUI library to implement the graphical part had to be found and the non-
portable code of OM had to be adapted to be compiled under a free Common Lisp
implementation.

There are many free GUI libraries available under Linux, the one chosen for the
project was GTK+, which provides not only a wide set of widgets but also the
library itself was available to be used under CMUCL or CLISP (two free Common
Lisp implementations). CMUCL was chosen as the compiler for the port, since it
fulfilled the requirements imposed by the OM code.

After choosing the development tools, a basic implementation strategy was adopted:
Due to the tight integration between the operational and the graphic part of OM,
the original code had to be left as unmodified as possible, to avoid a complete re-
design of the application. To make this possible, we created a directory for each
system (in this case: Linux and MacOS), the code was carefully read and the no-
ANSI parts were moved to the MacOS directory in a file named OMPortability
that we explain below. The rest of the code (ANSI Common Lisp) was left so that
other developers could port it to different platforms.



OMObject

OMContainerFrame

OMSimpleFrame

ZX icon—finder ‘ ‘ EditorView ‘ ‘ boxframe

metaobj-panel

/\
metaobj-editor
nonRelationEditor
RelationEditor
/N

RelationPanel

‘ PatchPanel ‘ ‘ PackagePanel ‘ ‘ PatchEditor ‘ ‘ PackageEditor

MagquettePanel

MagquetteEditor

FIGURE 3

The platform dependent code was divided into blocks. The blocks description is
as follows (figure 4):

oM

oM GRAPHIC PART
100% MCL

OMDrag-Drop,
Event Handling

MCL2CMUCL
(Lisp Code)

MCL GUI Library
Redefined using GTK+

FIGURE 4



¢ OM ANSI: The code that was written right as [14].

e OM NO ANSI: Some functions were used in the OM”s original implementation
(MacOS 9.x) but there are other functions in CMUCL that can be used for the same
purpose. For this kind of functions, we make a wrapper for each function in the file
Mcl2Cmucl.lisp (to declare the functions with the same name that MCL but in the
body of the function to call the function of CMUCL).

e OM 100% MCL: The are other functions no defined in the standard ANSI
(there are no corresponding function in CMUCL). These functions had to be reim-
plemented using the packages availables in CMUCL in the file Mcl2Cmucl.lisp too.

¢ OM GRAPHIC PART: MCL have there own classes for creating graphical
interfaces, and OpenMusic depends on this classes. Gtk+ includes all the necessary
components for implement the same MCL classes and maintain the OpenMusic
original scheme. Therefore we had to reimplemented the classes using the Gtk+
widgets.

And these blocks was implemented using the following files:

e Class Constructors: Provides the initialization methods for the OM graphic
classes, it uses directly the GTK+ library and connects the appropriate signals to
the widgets so events can be handled. Also there are OM-Linux specific actions
implemented inside the class initialization to emulate the behavior obtained trough
the use of MCL libraries in OM-Mac.

e Fvents: Contains redefinitions for event-handling methods, so they can work
properly using the GTK-based graphic implementation.

e MCL to CMUCL: Contains class and function definitions that permit to em-
ulate some MCL functionality inside CMUCL, and there are some functionalities
that had to be modified, for example the points now are used with the macro
ompoint and not with #Q.

o Compatibility: Contains OM adapted functions, methods, classes and variables,
so they can work properly on OM-Linux.

e Portability: Contains methods and functions that must be implemented com-
pletely different for each compiler.

e Uniz Tools: Contains functions that was made only for Linux (and not exists
in the Mac version).

The files are placed inside a special folder (this folder is named with the name of
the platform) for each OM part (kernel, basic projects, music projects, constraint
projects). However, other files should be in this special folder, for exaple, in Linux
there was a problem with the metaclasses in the classes OMClass and OMStan-
dardClass. This problem was solved creating other metaclasses and modifying the
whole file OMClass.lisp. Consequently, the new OMClass.lisp was in the folder
Linux.

Finally, in the BuildImage directory, it was created a folder for each platform,
because the way to compile OM under Linux if very different from MacOS: there is
a Makefile which is called by the command make and creates CMUCL-precompiled
images of the kernel and the projects.



3. OM FOR MACOS X

For MacOS X there are no very significant changes. The OM original compilator
(MCL) was port to this platform. This means that it can be compiled and run the
same way that OpenMusic for MacOS 9.

However, this architecture has its own special directories in the kernel and the
projects, and the same modules except for

e MCL to CMUCL: There is no reason to remake the functions,

e Class Constructors: The methods for initialize the classes are in the source of
MCL,

o Compatibility: The original source code was made for MCL, so this code is
100% compatible, and

e Uniz Tools: There is a Mac Tools file with the same meaning.

4. CONCLUSIONS AND FUTURE WORK

The aim of the project (an implementation of the software OpenMusic in the
operating systems Linux and MacOS X) was completly achieved. The OM port
has been developed as an open source project and is distributed under the GPL
license. The sources are always available trough CVS, the main site for the project is
http:/ /sourceforge.net/projects/ircam-openmusic. The site is mainly a developers
site, theres documentation available for compiling and installing OM Linux.

The project itself needs developers and testers, so bug submissions and/or cor-
rections are a must. It’s important to take into account that right now the OM
code has been almost unified for both platforms, but there are still low-level issues
that are particular and crucial for each platform, this is valid for all future changes
and enhancements.

REFERENCES

1. Carlos Agon Amado. An Environment for Computer Assisted €& Composition. PhD thesis,
Paris VI, 1998.

2. Inc. Apple Computer. Inside Macintosh: Macintosh ToolBox Essentials. Apple Computer,
Inc., 1992.

3. Inc. Apple Computer. Inside Macintosh: More Macintosh ToolBoz. Apple Computer, Inc.,
1993.

. Inc. Digitool. Macintosh Common Lisp Reference. Digitool, Inc., 1996.

Tony Gale and Ian Main. Gtk 1.2 Tutorial. http://www.gtk.org/tutorial, March 2001.

. Ircam Users Group. OpenMusic Developer’s Documentation, 1998.

. Ircam Users Group. OpenMusic User’s Manual and Tutorial, 1999.

. Sonya E. Keene. Object-Oriented Programming in Common Lisp. Symbolics, Inc., 1989.

© 0N ;A

. Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject Protocol,
chapter 5 y 6. MIT Press, 1991.

10. Robert A. MacLachlan. CMU Common Lisp User’s Manual. http://cvs2.cons.org/ftp-
area/cmucl/doc/cmu-user/, 2003.

11. Roger S. Pressman. Software Engineering. McGraw-Hill, 1988.

12. Camilo Rueda, Carlos Agon, Gerard Assayag, and Mickael Laurson. Computer assisted com-
position at Ircam: Patch Work and OpenMusic. 1999.

13. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Loransen.
Object-Oriented Modeling and Design. Prentice Hall, Inc., 1991.

14. Guy L. Steele. Common Lisp the Language, 2nd Edition. Digital Press, 1990.
15. Gtk+ Team. Gtk+ API Reference. http://www.gtk.org/api, 2001.



