
0018-9162/03/$17.00 © 2003 IEEE August 2003 3

R E S E A R C H F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Using Machine-Learning
Methods for Musical
Style Modeling

T he ability to construct a musical theory
from examples presents a great intellectual
challenge that, if successfully met, could
foster a range of new creative applications.
Inspired by this challenge, we sought to

apply machine-learning methods to the problem of
musical style modeling. Our work so far has pro-
duced examples of musical generation and appli-
cations to a computer-aided composition system.

Machine learning consists of deriving a mathe-
matical model, such as a set of stochastic rules, from
a set of musical examples. The act of musical com-
position involves a highly structured mental process.
Although it is complex and difficult to formalize, it
is clearly far from being a random activity.

Our research seeks to capture some of the regu-
larity apparent in the composition process by using
statistical and information-theoretic tools to ana-
lyze musical pieces. The resulting models can be
used for inference and prediction and, to a certain
extent, to generate new works that imitate the style
of the great masters.

MODELING STYLES
Style modeling implies building a computational

representation of the musical surface that captures
important stylistic features. The musical surface
embodies the collection of notes or playing instruc-
tions for performing the musical piece. This surface
is usually presented to a musician or to musical
sequencer software in the form of a written musical
score or a musical instruments digital interface
(MIDI) file.

The stylistic features that characterize the musical
piece are usually hidden from the surface, becoming
apparent in the way that higher-level abstractions—
such as patterns of rhythm, melody, harmony, and
polyphonic relationships—appear in the music, inter-
leaved and recombined in a redundant fashion.
Statistical approaches capture some of the statistical
redundancies without explicitly modeling the higher-
level abstractions. This approach to musical model-
ing also makes it possible to generate new instances
of musical sequences that reflect an explicit musical
style.1

One of machine learning’s main purposes is to cre-
ate the capability to sensibly generalize. Composers,
for example, want to uncover the creative possibil-
ities of certain musical material without necessarily
explaining it.

Statistical analysis of a corpus reveals some of the
possible recombinations that comply with the con-
straints or redundancies typically found in a par-
ticular style. Interesting applications include style
characterization tools for the musicologist,2 gener-
ation of stylistic metadata for intelligent retrieval
in musical databases, music generation for Web and
game applications, machine improvisation with or
without interaction with human performers, and
computer-assisted composition.

PREDICTIVE THEORIES IN MUSIC
Building on the work of Leonard B. Meyer,3

researchers commonly agree that expectations based
on recent past context guide musical perception. In
music applications, exactly how we make musical

Research using statistical and information theoretic tools provides
inference and prediction models that, to a certain extent, can generate
new musical works imitating the style of the great masters.

Shlomo
Dubnov
Ben-Gurion
University

Gerard
Assayag
Olivier
Lartillot
Institut de
Récherché et
Coordination
Acoustique/Musique

Gill
Bejerano
Hebrew University

4 Computer

predictions—and determine our musical
expectations based on it—is unknown.
Establishing the right amount of relevant past
samples for prediction is difficult because the
length of the musical context varies widely,
ranging from short figurations to longer
motifs.

Taking a large fixed context makes the
parameters difficult to estimate, considering
that the number of parameters, their associ-
ated computational cost, and the data
requirements for reliable estimation increase
exponentially with the context’s size. Coping
with this problem requires designing a pre-

dictor that can deal with an arbitrary length of
observation sequences and be competitive with a
rather large class of predictors, such as variable-
length Markov predictors.

To design such a predictor, we use two
approaches: incremental parsing and prediction
suffix trees. IP is based on universal prediction, a
method derived from information theory. PST, a
learning technique initially developed to statisti-
cally model complex sequences, has applications in
linguistics and computational biology.

MUSIC GENERATION AND STYLE REPLICATION
A generative theory of music can be constructed

by explicitly coding music rules in some logic or
formal grammar.4,5 This approach is sometimes
called an expert system or knowledge engineering.
Although these methods achieve impressive results,
they require extensive exploitation of musical
knowledge, often specific to each composer or style.
A contrasting approach relies on statistical learning
or empirical induction.

Several researchers have used probabilistic meth-
ods, notably Markov chains, to model music.6,7

Markov chains are statistical models of random
sequences that assume that the probability for gen-
erating the next symbol depends only on a limited
past.

First-order Markov chains or models assume
dependence on the last symbol only. Higher-order
Markov models assume a longer context, so that
generating the next symbol depends on several
symbols back into the past. Some researchers6 have
shown that at very low orders—such as the second
order or so-called bigram—Markov models gener-
ate strings that do not recognizably resemble strings
in the corpus, while at very high orders, the model
simply replicates strings from the corpus.

David Cope’s more recent work describes an inter-
esting compromise between these two approaches.8

Cope uses a grammatical-generation system com-
bined with what he calls signatures, melodic micro-
gestures typical of individual composers. By
identifying and reusing such signatures, Cope repro-
duced the style of past composers and rendered nat-
uralness to the computer-generated music. Our
learning method starts with trying to discover, auto-
matically and in an unsupervised manner, typical
phrases or patterns, then it assigns stochastic gener-
ation rules for their recombination.

DICTIONARY-BASED PREDICTION
Both the IP and PST methods belong to the gen-

eral class of dictionary-based prediction methods.
These methods operate by parsing an existing musi-
cal text into a lexicon of phrases or patterns, called
motifs, and provide an inference rule for choosing
the next musical object that best follows a current
past context.

The parsing scheme must satisfy two conflicting
constraints: On the one hand, maximally increas-
ing the dictionary helps to achieve a better predic-
tion, but on the other, enough evidence must be
gathered before introducing a new phrase to allow
obtaining a reliable estimate of the conditional
probability for generation of the next symbol. The
“trick” of dictionary-based prediction (and com-
pression) methods is that they cleverly sample the
data so that only a few selected phrases reliably rep-
resent most of the information.

In contrast to dictionary-based methods, fixed-
order Markov models build potentially large prob-
ability tables for the appearance of a next symbol at
every possible context entry. To avoid this pitfall,
more advanced “selective prediction” methods build
more complex variable memory Markov models.
Although it may seem that the Markov and dictio-
nary-based methods operate in a different manner,
they both stem from similar statistical insights.

Generative procedure
We use dictionary-based methods to model the

musical (information) source in terms of a lexicon
of motifs and their associated prediction probabil-
ities. To generate new instances (messages), these
models “stochastically browse” the prediction tree
in the following manner:

• Given a current context, check if it appears as
a motif in the tree. If found, choose the next
symbol according to prediction probabilities.

• If the context is not found, shorten it by remov-
ing the oldest (leftmost) symbol and go back
to the previous step.

Dictionary-based
prediction

methods sample
the data so that
a few selected

phrases represent
most of the
information.

These steps iterate indefinitely, producing a
sequence of symbols that presumably corresponds
to a new message originating from the same source.
In some cases, this procedure might fail to find an
appropriate continuation and end up with an
empty context, or it might tend to repeat the same
sequence over and over again in an infinite loop.

Incremental parsing
Jakob Ziv and Abraham Lempel9 first suggested

the IP algorithm in the context of lossless com-
pression. IP builds a dictionary of distinct motifs
by making a single left to right traversal of a
sequence, sequentially adding to a dictionary every
new phrase that differs by a single last character
from the longest match that already exists in the
dictionary. Using a tree representation, every node
is associated with a string, labeled by the charac-
ters on the arc that lead from the root to that node.

Each time the parsing algorithm reaches a node,
it means the node’s string has already occurred
from the start of a phrase boundary. When this hap-
pens, the system grows a child node that corre-
sponds to the appearance of a new phrase that
continues the current string.

Probability assignment
The code lengths of the Ziv and Lempel com-

pression scheme assign conditional probability to
a symbol given as context. For the sake of simplic-
ity, let’s assume that we compress a binary
sequence. Let c(n) be the number of motifs in the
parsing of an input n-sequence (the number of
nodes in the tree representation). Then, log(c(n))
bits are needed to describe each prefix (a motif
without its last character), and 1 bit is needed to
describe the last character. Since Ziv and Lempel
showed that the average code length c(n)log(c(n))/n
converges to the entropy of the sequence with
increasing n, this provides proof that this coding is
asymptotically optimal.

Information theory teaches that in the case of
optimal coding, the code length assignment is
inversely proportional to the phrase’s probability.
In the IP case, we use the resulting code lengths,
implicitly encoded in the tree, to estimate the prob-
abilities. Since all code lengths in the coding scheme
are equal, we consider all IP motifs to have an equal
probability. The probability can be deduced now
as a ratio between the cardinalities of the different

subtrees following the node. As the total number of
subnodes is proportional to the number of times
the node has occurred, the relative cardinalities of
the subtrees from every node correspond to the
node’s share of the probability space. Thus, for a
node labeled by string c, with two possible contin-
uations, the prediction probabilities of the next
symbols are taken as the relative portion of counts
of number of nodes appearing in all subtrees of the
current node c, setting:

IP example
The following example demonstrates how we

use IP to generate a sequence based on analysis of
the simple sequence abracadabra. The parsing and
generation processes are incremental: The first let-
ter is a continuation of the empty context. Each of
the next letters provides a continuation of the
longest context that is a suffix of what has been
generated already.

In our simple example, if the process first gener-
ates an a (with probability 4/7), then the next let-
ter is a continuation associated with the context a
(uniform over b, c, and d), and so on. For exam-
ple: P(generate “abrac”) = P(a|”“)P(b|a)P(r|ab)
P(a|abr)P(c|abra) = 4/7 · 1/3 · 2/7 · 1 · 1/3. Figure 1a
shows the analysis tree, and Figure 1b shows the
corresponding probability assignments.

SELECTIVE DICTIONARY-BASED PREDICTION
Even though an IP predictor may asymptotically

outperform a Markov predictor of a finite order,10

the music sequences that we model in practice are
of a finite length. Moreover, at least in some appli-
cations, we do not need to parse the reference set
on the fly, as IP does. Using the whole sequence to
estimate the statistics may help improve the algo-
rithm’s performance for shorter sequences.

Prediction suffix trees
In 1996, Dana Ron and colleagues11 developed

the prediction suffix tree algorithm, named after
the data structure used to represent the learned sta-
tistical model. A PST represents a dictionary of dis-
tinct motifs, much like the one the IP algorithm
generates. However, in contrast to the lossless cod-

Pc (x) =
Nc (x)

Nc (a) + Nc (b)

August 2003 5

context: “ ”
continuations: a (4/7), b (1/7), r (2/7)

a r

b c d a

b

root

context: “a”
continuations: b (1/3), c (1/3), d (1/3)

context: “r”
continuation: a (1/1)

(a) (b)

Figure 1. Incre-
mental parsing
(IP) example:
(a) Analysis tree
and (b) its
corresponding
prediction tree
with probability
assignments.

6 Computer

ing scheme underlying the IP parsing, the PST algo-
rithm builds a restricted dictionary of only those
motifs that both appear a significant number of
times throughout the complete source sequence and
are meaningful for predicting the immediate future.
The framework underlying this approach is effi-
cient lossy compression.

Selective parsing
An empirically motivated variant of the PST algo-

rithm12 uses a breadth-first search for all motifs that
comply simultaneously with three requirements:

• The motif is no longer than some maximal
length L.

• Its empirical probability within the given data
set exceeds a threshold Pmin.

• The conditional probability it induces over the
next symbol differs by a multiplicative factor
of at least r from that of the shorter contexts it
subsumes, for at least one such next symbol.

The search collects only these motifs into a
restricted dictionary.

Probability assignment
The empirical probability of a motif is the num-

ber of its occurrences in the text divided by the
number of times it could have occurred. For exam-
ple, the empirical probability of the motif “aa”
within the sequence “aabaaab” is 3/6 = 0.5. A con-
ditional probability to observe a symbol after a
given context is the number of times this symbol
comes immediately after that context, divided by
the total occurrences of the context in the text.
Thus, the conditional probability of seeing “b”
after “aa” in the sequence “aabaaab” is 2/3. Since
the conditional probability of seeing “b” after “a”
is 2/5, the multiplicative difference between the con-
ditional probability to observe “b” after “aa” and
that after “a” is (2/3)/(2/5) = 5/3.

The PST formulation incorporates the counts in
a slightly different manner than in IP. Using the
same notation as in the previous example, the prob-
ability for a next symbol extension x from a node
labeled by string c is given by P̂c(x) = (1 – |Σ|g)Pc(x)
+ g, where |Σ| is the size of the alphabet and g is the
smoothing factor, 0 < g < 1 / |Σ|. Fractional proba-

bilities are collected from all possible next-symbol
extensions in proportion to their actual counts,
then they are redistributed equally between all
counts to achieve a minimal conditional probabil-
ity for any continuation P̂c(x) ≥ g > 0.

PST example
The PST analysis example using abracadabra has

the following parameters: L = 2, Pmin = 0.15, r =
2, and g = 0. For each node, the analysis associates
the list of probabilities that the continuation may
be, respectively, a, b, c, d, or r.

Figure 2 shows the results of this analysis.
Potential node ba failed the Pmin criterion, while
potential node bra passed that criterion but failed
both the L and r criteria. Generation proceeds much
like in the IP resulting tree. Now, however,

P(generate “abrac”) = P(a|“”)P(b|a)P(r|ab)
P(a|abr)P(c|abra) = 5/11 · 1/2 · 1· 1 · 1.

MUSIC REPRESENTATION
So far we have loosely used the term sequence to

denote an ordered list of objects or symbols. To
capture a significant amount of musical substance,
a preanalytic phase cuts the musical data—gener-
ally in MIDI format—into slices, with the appear-
ance of new events and the termination of past ones
determining the beginnings and endings. Every slice
has duration information and contains a series of
channels, each of which contains pitch and veloc-
ity information and possibly other musical para-
meters. These slices are objects or symbols, and the
set of possible symbols is the alphabet.

Figure 3a, for example, shows the piano roll rep-
resentation for the beginning of Bach’s Prelude in
C, in which lowercase letters represent the third
octave and uppercase letters the fourth octave.
Figure 3b shows how the analysis slices this
sequence into symbols, a process sometimes called
quantization. The bold letters represent the begin-
nings of notes.

ENHANCEMENT FILTERS
In light of some theoretical insights and prelim-

inary tests, we made several improvements to our
system’s representation, including preanalytic sim-
plification, generative constraints, loop escape, and
analysis-synthesis parameter reconstruction.

Preanalytic simplification
Real musical sequences—for example, MIDI files

of a piece interpreted by a musician—feature fluc-
tuations of note onsets, durations, and velocities,

 “ ”(root)
(5/11,2/11,1/11,1/11,2/11)

“r”
(1,0,0,0,0)

“b”
(0,0,0,0,1)

“a”
(0,1/2,1/4,1/4,0)

“ra”
(0,0,1,0,0)

Figure 2. Prediction
suffix tree example.
The PST analysis
assigns probabilities
at each node.

inducing a complexity that fools the analysis. The
alphabet size tends to increase in an intractable
way, leading to unexpected failures and poor gen-
eralization power.

We have thus developed a toolkit containing five
simplification filters:

• the arpeggio filter vertically aligns notes that
are attacked nearly at the same time;

• the legato filter removes overlap between suc-
cessive notes;

• the staccato filter ignores silence between suc-
cessive notes;

• the release filter vertically aligns note releases;
and

• the duration filter statistically quantizes the
durations to reduce the duration alphabet.

Users can apply thresholds to change these fea-
tures. For example, a threshold of 50 ms separates
a struck chord on the piano from an intentionally
arpeggiated chord. Using the simplification toolkit
on MIDI files containing live performances pro-
vides musical data that is full of idiosyncrasies and
is thus of great value as a model for synthetic
improvisation.

Generative constraints
It is possible to specify constraints during the gen-

eration phase. At each cycle, if the new symbol does
not respect the constraint, the generation is can-
celed and a new symbol is considered. If no symbol
is found to be satisfactory, the algorithm backtracks
to the previous cycle, or more, if necessary. For
example, it is possible to specify a continuity con-
straint that imposes a minimal context size anytime
during the generation phase to avoid musical dis-
continuity in the case of an empty context.

Loop escape
If no prediction smoothing is applied, the gener-

ation phase can easily enter into an infinite loop. A
context-generated subtree consists of the exhaus-
tive set of all the possible contexts that can be met
after the present one. Practically, we need to know
only the size of this subtree, which is computed once
before the generation phase. This computation con-
sists of marking, directly on the original tree, all the
possible future contexts and a count of these marks.

When the size of the context-generated subtree is
below a user-specified threshold N, an N-order-
loop is detected. The loop phenomenon occurs
principally because the generation phase searches
for the unique maximal context and proposes few
alternative continuation symbols. In the case of a
loop, we loosen this constraint and examine not
only the maximal context but also shorter ones,
which escape the loop in most cases.

Analysis-synthesis parameter reconstruction
In our formulation, a symbol is a Cartesian prod-

uct of several musical parameters. To increase
abstraction power in the analysis, we allow the sys-
tem to discard some parameters—for example, the
velocity. The retained parameters are called analy-
sis information. However, in the generation phase,
the system cannot retrieve the discarded informa-
tion. For example, if the system discards note dura-
tions and dynamics, the result is isorhythmic and
dynamically flat musical sequences that sound like
the work of a musical box. Our solution is to store
the excluded information, such as note dynamics
that are important for expressive performance, in
the model. This synthetic information can be recon-
structed during the generation phase.

This solution has significant advantages. First,
the generated music regains much of the diversity,
spirit, and human appeal of the original MIDI
recording. Moreover, since it is possible to restrict
the analytic information and therefore find more
redundancy in the original sequence, the genera-
tion phase is less constrained. At each generation
cycle, every context features many more continua-
tions than is possible without restriction.

An OpenMusic example
These musical machine-learning methods were

realized in software that was implemented as a
library in OpenMusic,13 an open source, Lisp-based
visual programming environment developed at
Ircam (www.ircam.fr/OpenMusic) for music com-
position and analysis.

Figure 4 shows the learning and generating stages
in an OpenMusic-commented visual program.
Input parameters in the boxes let the user choose
between the IP and PST models and tune its para-
meters: loop escape, analysis-synthesis, and so on.
The boxes on the right side use the raw MIDI-like

August 2003 7

E
C

G

e

c

G

C
E

c c

e

c

e

G

c

e

C

c

e

E

c

e

G

c

e

C

c

e

E

Pi
tc

h

Time(a) (b)

Figure 3. Quantiza-
tion example. (a)
Piano roll notation
for the beginning of
Bach’s Prelude in C,
and (b) the same
sequence sliced
into symbols.

8 Computer

output to compute a metric-rhythmic segmentation
that is compatible with common music notation.
The program sends the result to professional music
notation software.

The learned MIDI file in Figure 5 is an interpre-
tation of Charlie Parker’s famous Donna Lee in
standard music notation. An IP model provided this

machine improvisation, in which only the first voice
of the MIDI file, the saxophone, has been learned.
The IP improvisation starts on a phrase close to the
original theme and seems to turn around a repeti-
tive pattern of C, E , F, E, E , D , C, B , and A ,
with different ornamentations, then escapes—
thanks to the loop escape mechanism—toward
a typical Bop style improvisation. The MIDI ren-
dering can be heard at www.ircam.fr/equipes/
repmus/MachineImpro.

MUSICAL EXPERIMENTS
We have carried out extensive musical experiments

to test our system and compare the two generative
algorithms. First, we gathered MIDI files from several
sources, including polyphonic instrumental and
piano music, with styles ranging from early renais-
sance and baroque music to hard-bop jazz. In cases
in which the MIDI file was derived from a live record-
ing, the combination of the simplification toolbox
and the learning-generation gives excellent results.
This simplification is also important in cases in which
the overall complexity leads to a huge alphabet.

Style interpolation
When the system analyzes the set of different

musical pieces simultaneously into a dictionary of
common motifs, the generation can interpolate over
the space that the separate models span. When the
analysis finds a common pattern of any length
between the separate dictionaries during training,
the generation phase can create smooth transitions
from one style to another by choosing at random a
continuation path that belongs to the other model.
Testing this idea over a set of two-voice Bach com-
positions reveals interesting subsequences that
show original and convincing counterpoint and
harmonic patterns, consistent with Bach’s style.

IP versus PST
Table 1 provides a comparison of IP and PST

properties. Although they are statistically related,
at times, these two methods produce significantly
different musical results.

Generally, in our experience, IP tends to capture
a piece’s musically meaningful motifs. It has a ten-
dency to copy complete blocks from the original
music, “mimicking” it with unexpected juxtaposi-
tions, and at times ridiculing the concepts of
rhythm, meter, and form.

PST, on the other hand, shows more inventive-
ness by introducing transitions in the middle of a
bar or a phrase, thus creating not just juxtaposi-
tions but more interesting transitions. The tradeoff

Figure 4. OpenMusic programming environment. The user chooses the IP or PST
model, then tunes it using parameters such as loop escape and analysis-synthe-
sis. The boxes on the right side use the raw output to compute a metric-rhythmic
segmentation that is compatible with common music notation.

Figure 5. Learned MIDI file. This possible machine improvisation on Charlie
Parker’s famous standard, Donna Lee, was created using an IP model.

is that PST might cause false notes to appear more
often.

Available results
We used OpenMusic programs to produce a vari-

ety of musical examples, including piano improvi-
sations in the style of Chick Corea, Chopin’s etudes,
polyphonic Bach counterpoint, and modern jazz
improvisations derived from a training set fed by
several performers asked to play for the learning sys-
tem (www.ircam.fr/equipes/repmus/MachineImpro).

With the assistance of Frederic Voisin, Ircam and
the Cite de la Musique Jazz Festival have used this
system as a tool for computer-assisted composition,
creating two original pieces by Jean-Remy Guedon
that were performed in a concert by the French
Orchestre National de Jazz. Several solo parts in
these pieces were IP-generated, transcribed to a
score, and performed during the concert on saxo-
phone and electric guitar.

Interactive and real-time issues
Because the IP algorithm is incremental in nature,

it is suitable for real-time interactive performance.
We have developed a prototype1 that browses a pre-
diction tree with added constraints derived from a
performer who plays one voice of the polyphony
and generates the other parts, which may be con-
trapuntal, in real time, consistent with the learned
style. This differs dramatically from usual accom-
paniment systems, which generate chords or arpeg-
gios based on simple diatonic triad rules. Other
researchers have built Markov-related real-time
interactive systems.14,15

W e are currently working on a more general,
OpenMusic-based real-time performance
system in which the machine can interact

with one or several performers, catching the style
and responding on the fly. In addition to the learn-
ing and generation process, users will be able to
insert compositional transformations expressed in
the powerful OpenMusic language between the
learning, generation, and rendering steps.

To better understand and control the system’s
behavior, we are collaborating with Emmanuel

Bigand, a psychoacoustician from Université de
Dijon, to measure to what extent and for how long
our generation system can “fool” both musically
educated and uneducated listeners. In a blind-test
setup, participants are asked to distinguish between
excerpts from original performances and from gen-
erated ones, using different parameter configura-
tions. ■

Acknowledgment
Gill Bejerano is supported by a grant from Israel’s

Ministry of Science.

References
1. G. Assayag, S. Dubnov, and O. Delerue, “Guessing

the Composer’s Mind: Applying Universal Prediction
to Musical Style,” Proc. Int’l Computer Music Conf.,
Int’l Computer Music Assoc., 1999, pp. 496-499.

2. S. Dubnov, G. Assayag, and R. El-Yaniv, “Universal
Classification Applied to Musical Sequences,” Proc.
Int’l Computer Music Conf., Int’l Computer Music
Assoc., 1998, pp. 332-340.

3. L. Meyer, Emotion and Meaning in Music, University
of Chicago Press, 1961.

4. K. Ebcioglu, An Expert System for Harmonization
of Chorals in the Style of J.S. Bach, doctoral disser-
tation, Dept. Computer Science, SUNY at Buffalo,
1986.

5. D. Lidov and J. Gambura, “A Melody Writing Algo-
rithm Using a Formal Language Model,” Computer
Studies in Humanities, 1973, pp. 134-148.

6. F. Brooks Jr. et al., “An Experiment in Musical Com-
position,” Machine Models of Music, S. Schwanauer
and D. Levitt, eds., MIT Press, 1993, pp. 23-40.

7. D. Conklin and I. Witten, “Multiple Viewpoint Sys-
tems for Music Prediction,” Interface, vol. 24, 1995,
pp. 51-73.

8. D. Cope, Computers and Musical Style, Oxford Uni-
versity Press, 1991.

9. J. Ziv and A. Lempel, “Compression of Individual
Sequences via Variable Rate Coding,” IEEE Trans.
Information Theory, vol. 24, no. 5, 1978, pp. 530-536.

10. M. Feder, N. Merhav, and M. Gutman, “Universal
Prediction of Individual Sequences,” IEEE Trans.
Information Theory, vol. 38, 1992, pp. 1258-1270.

August 2003 9

Table 1. Comparison of IP and PST properties.

Incremental parsing Prediction suffix trees

Guiding principle: Lossless coding Lossy compression
Everything parsed: Completeness assures inclusion of Selective, partial parsing rules out rare events and events
all observed rare transitions that do not improve prediction
Online estimation through instantaneous coding Batch analysis through file compression
Poor conditional empirical probability estimation for short Robust conditional empirical probability estimation for
inputs given IP parsing’s sensitivity to even a single symbol significant events
change

10 Computer

11. D. Ron, Y. Singer, and N. Tishby, “The Power of
Amnesia: Learning Probabilistic Automata with Vari-
able Memory Length,” Machine Learning, vol. 25,
1996, pp. 117-149.

12. G. Bejerano and G. Yona, “Variations on Proba-
bilistic Suffix Trees: Statistical Modeling and Predic-
tion of Protein Families,” Bioinformatics, vol. 17,
2001, pp. 23-43.

13. G. Assayag et al., “Computer Assisted Composition
at Ircam: PatchWork & OpenMusic,” The Computer
Music J., vol. 23, no. 3, 1999, pp. 59-72.

14. D. Zicarelli, “M and Jam Factory,” The Computer
Music J., vol. 11, no. 4, 1987, pp. 13-29.

15. F. Pachet, “Interacting with a Musical Learning Sys-
tem: The Continuator,” Proc. ICMAI 2002, Springer-
Verlag, 2002, pp. 119-132.

Shlomo Dubnov is a lecturer in the Department of
Communication Systems Engineering, Ben-Gurion
University, Israel. His research interests include
multimedia communication, computer music, and
signal processing. He received a PhD in computer
science and musicology from the Hebrew Univer-
sity, Jerusalem. Contact him at dubnov@bgumail.
bgu.ac.il.

Gerard Assayag is head of the research group on
music representations at Ircam, the Institut de
Récherché et Coordination Acoustique/Musique,
Paris. His research interests include programming
languages, computer music, and music modeling.
He received a Diplôme d’Etudes Approfondies in
computer science from Université Paris VI. Con-
tact him at assayag@ircam.fr.

Olivier Lartillot is a PhD student at Ircam. His
research interests include computer music and cog-
nitive sciences. He received a Diplôme d’Etudes
Approfondies in an interdisciplinary program
(acoustics, signal processing, and computer music)
from Université Paris VI. Contact him at lartillo@
ircam.fr.

Gill Bejerano is a postdoctoral researcher at the
Center for Biomolecular Science and Engineering,
University of California, Santa Cruz. His research
interests include computational molecular biology,
machine learning, and information theory. He is a
PhD candidate in computer science at the Hebrew
University, Jerusalem. Contact him at jill@soe.ucsc.
edu.

