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AbstractIn this paper we present our �rst approach to model and verify biological systems using ntcc, a concurrentconstraint process calculus. We argue that the partial information constructs in ntcc can provide a suitablelanguage for such systems. We also illustrate how ntcc may provide a uni�ed framework for the analysisof biological systems, as they can be described, simulated and veri�ed using the elements provided by thecalculus.
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1 Introduction
Partial information arises naturally in the description of biological systems. Itis possible to distinguish two main kinds of partial information when modelingthose systems: quantitative and behavioral. While partial quantitative informationusually involves incomplete information on the state of the system (e.g., the set ofpossible values that a variable can take), partial behavioral information refers to theuncertainty associated to behavior of interactions (e.g., the unknown relative speedson which two systems interact). Finding precise ways of expressing these kindsof partial information can help to better understand complex pattern behaviors,frequent in biological systems.

Partial information is a central feature of Concurrent Constraint Programming(CCP) [19], a well-established formalism for concurrency. In CCP, processes interactwith each other by telling and asking partial information represented as constraints(e.g., x < 42). Perhaps the most appealing and distinctive feature of CCP is that itcombines the traditional operational view of process calculi with a declarative onebased upon logic. In other words, the process terms can be viewed at the sametime as computing agents and logic formulas. This combination allows CCP to
This paper is electronically published inElectronic Notes in Theoretical Computer ScienceURL: www.elsevier.nl/locate/entcs
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bene�t from the large body of techniques of both process calculi and logic. Forthese reasons CCP can be a convenient framework to describe and reason aboutbiological systems.

In this paper we propose ntcc [14], a timed process calculus based on CCP, asa suitable language for analyzing biological systems. In ntcc the above-mentionedkinds of partial information are naturally captured. On the one hand, partial quan-titative information is captured by the notion of constraint system, a structure thatgives coherence and de�nes (logic) inference capabilities over constraints. Sinceconstraint systems are parametric to ntcc, by choosing the appropriate constraintsystem(s) several kinds of conditions, at di�erent levels of detail, can be stated.This could be particularly useful in the description of quantitative information. Forinstance, one could think of a constraint system over di�erential equations inter-acting with others over, say, integers or real intervals. On the other hand, partialbehavioral information is represented by non-deterministic and asynchronous op-erators available in ntcc. The interplay of these operators in the discrete timeof ntcc allows to explicitly describe and reason about the uncertainty in the timeoccurrence of many biological phenomena.
Furthermore, ntcc provides reasoning techniques to prove that a given processP satisfy a given property F . In fact, the calculus o�ers a linear-temporal speci�-cation logic and its corresponding proof system in which reachability analysis canbe formally carried out. Reachability analysis is central in the biological context.Consider, for instance, bacterial transcription: it can be seen as a reachability anal-ysis problem in which one wants to know if there is a gene expression possible in agiven gene regulatory network.
We shall take advantage of these features by modeling biological systems asprocesses and their properties as linear-temporal formulas, all in a single framework.That is, ntcc provides a description language for biological systems that is tightlyrelated to powerful reasoning techniques. An additional advantage of using ntcc forthe study of biological systems consists in the possibilities of turning this theoreticalframework into software tools. As a matter of fact, the AVISPA Research Group 1

(of which the authors are members) has recently built a prototype tool [2, 3] thatadmits the description of biological systems expressed as ntcc processes and allowsto observe their behavior over time.
The main contribution of this paper is presenting ntcc as a uni�ed frameworkfor the study of biological systems involving partial information and showing howits constructs naturally capture many biological phenomena. More speci�cally, wepropose the use of constraint systems to represent partial quantitative informationand the modeling of partial behavioral information as non-deterministic and asyn-chronous ntcc processes. We take the Sodium-Potassium pump [20], a mechanismthat inuence active transport in eukaryote cells, as a compelling example of theapplicability of our approach. In fact, we will use the inference system to give aproof of the occurrence of a general malfunction of the pump in the presence of anunpredictable, malicious agent.

1 URL: http://avispa.puj.edu.co
2

http://avispa.puj.edu.co


Guti�errez, P�erez, Rueda and Valencia
Related Work

The use of certain process calculi, such as the �-calculus [17, 18], BioAmbients[16], the Brane calculus [7], Beta binders [15] and the �-calculus [8], as descriptionlanguages for Biology has been studied in recent years. This \language approach"for the analysis of biological systems however, has payed little attention to reasoningtechniques based on linear-temporal logic such as those available in ntcc. Otherconstraint-based calculi have been studied in the biological context. For instance,in [5, 10, 4], the hcc calculus [11] is used to study dynamic systems. However, sincehcc does not provide non-deterministic/asynchronous operators, representing partialbehavioral information turns out to be di�cult. Only in one of such works ( [5]),the logic nature of hcc is exploited, using a model-checking approach for qualitativevalidation of biological systems. No proof system or similar procedures are used,though. Other works involving the use of logic in the biological context are [1]and [6]. On the one hand, [1] proposes the use of hybrid automata to model andanalyze the behavior of biological systems. Supporting tools such as Simpathica [13],allow to query such models using a temporal logic language. On the other hand,in [6] a rule-based language for describing biological systems is proposed. Reasoningtechniques include three independent semantic structures (each one with associatedlogics), which are used depending on the desired level of detail. We believe that bythe appropriate use of constraint systems in the description of systems, analysis atseveral levels of detail are possible, preserving the same uni�ed framework.

Structure of this document
The ntcc process calculus is described next: the intuitions given above, re-garding the use of ntcc for the modeling and veri�cation of biological systems, arethoroughly explained. Section 3 summarizes the main results concerning speci�ca-tion and veri�cation for ntcc processes. They will be used in Section 4 where theSodium-Potassium pump is presented. In that section, we propose an ntcc modelof such a system as well as verify a non-trivial property of this model, using theabove-mentioned inference system. Section 5 concludes.

2 ntcc as a Calculus for Describing Biological Systems
In this section we present the ntcc process calculus and, by means of examples,show how it can be an appropriate language for modeling biological phenomena.For the sake of space, some formal details are elided from this presentation; anin-depth description of ntcc is given in [14].

Let us start with an intuitive description of reactive computation in ntcc. Inntcc, time is conceptually divided into discrete intervals (or time units). In aparticular time unit, a process P gets an input (an item of information representedas a constraint) c from the environment, it executes with this input as the initialstore, and when it reaches its resting point, it outputs the resulting store d to theenvironment. The resting point determines a residual process Q, which is thenexecuted in the next time unit. Information is not automatically transferred fromone time unit to the following.
3
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In CCP, a fundamental notion is that of a constraint system. Intuitively, a cons-traint system provides a signature from which constraints can be constructed, andan entailment relation which speci�es the inter-dependencies among them. Moreformally, a constraint system is a pair (�;�) where � is a signature of functionand predicate symbols, and � is a decidable theory over �. Given a constraint sys-tem (�;�), let (�;V;S) be its underlying �rst-order language, where V is a set ofvariables x; y; : : :, and S is the set of logic symbols :;^;_;);9;8; true and false.Constraints c; d; : : : are formulas over this �rst-order language. We say that c entailsd in �, written c j= d, i� c ) d is true in all models of �. For operational reasons,we shall require j= to be decidable. Henceforth, C denotes the set of constraints inthe underlying constraint system.
A widely known constraint system is FD [12]. In FD variables are assumedto range over �nite domains and, in addition to equality, we may have predicatesthat restrict the possible values of a variable to some �nite set. More formally,FD[n] (n > 0) is the constraint system where � is given by the constant symbols0; : : : ; n�1 as well as by the equality =, and � is given by the axioms of equationaltheory x = x, x = y ) y = x, x = y ^ y = z ) x = z, and v = w ) false for eachtwo di�erent constants v; w 2 �. Intuitively FD[n] provides a theory of variablesranging over a �nite domain of values f0; : : : ; n � 1g with syntactic equality overthese values.

2.1 Process Syntax
Processes P , Q, . . .2 Proc are built from constraints c 2 C and variables x 2 V inthe underlying constraint system by:

P;Q; : : : ::= tell(c) jP
i2I

when ci do Pi j P k Q j local x in P
j next (P ) j unless c nextP j ? P j !P

Below we provide some intuitions regarding the behavior of ntcc processes.
Including and Querying (Partial) Information
Process tell(c), the simplest operation to express partial information, includes aconstraint c into the current store, thus making it available to other processes inthe same time interval.

In the biological context, tell operations allow to represent at least two kindsof partial information statements: so-called ground rules and state de�nition state-ments. The �rst ones precisely state certain conditions that apply during the life ofthe biological system. A clear advantage here w.r.t. other calculi for biology is thatthese conditions can be expressed by exploiting the available (possibly incomplete)knowledge.
Example 2.1 Let process M = tell(l < pHin < u) represent a rule establishingthe acceptable levels of internal pH for some system. It establishes that such alevel must fall into some real interval (here given by variables l and u) during the
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whole experiment or simulation; the exact value of pHin in each time unit could beunknown.

Remarkably, the declarative avor in this kind of statements could favor thede�nition of essential properties in (biological) models. Complementary to groundrules, state de�nition statements refers to those constraints intended to de�ne theexact values for the variables in the system. This is particularly useful when oneexactly knows the set of possible states for the system at a given time; series of suchstatements (for di�erent time units) thus constitute a detailed view of the behaviorof the system. In the context of Example 2.1, M 0 = tell(pHin = f(pHold; k))is a process de�ning the value for the variable pHin in the current time unit. Itassociates such a value with a function f applied to a variable and a constant k.
Guarded operations of the form when c do P are complementary to tell opera-tions and constitute the basic means for querying (or asking) information about thestate of a system. Intuitively, a when c do P process queries the current constraintstore: if the guard c is present in such a store then the execution of P is enabled.The \presence" of c depends on the inference capabilities associated with the store.That is, a particular constraint could not be explicitly present in the store, but itcould be inferred from the available information.
From this description, it is straightforward to interpret when operations as away of formally expressing the required preconditions for establishing a particu-lar state of the system. The behavior of the system can be precisely stated inthis way. Returning to Example 2.1, one could express that when the level of pHreaches a threshold, then the interval for valid values for pHin should reduce, i.e.,when pHin > l � 2 do tell(u = u� k1).

Non-deterministic Choices
Non-determinism is a valuable way of representing several possible courses of ac-tion from the same initial state without providing any information on how oneof such courses is selected. In ntcc, non-deterministic behavior is obtained bygeneralizing processes of the form when c do P : a guarded-choice summationP

i2I when ci do Pi, where I is a �nite set of indexes, represents a process that, inthe current time interval, must non-deterministically choose one of the Pj (j 2 I)whose corresponding constraint cj is entailed by the store. The chosen alterna-tive, if any, precludes the others. If no choice is possible then the summationis precluded. We use Pi2I Pi as an abbreviation for the \blind-choice" processP
i2I when true do Pi. We use skip as an abbreviation of the empty summationand \+" for binary summations.
In the biological context, the combination of guarded choices and partial infor-mation represents an appropriate mechanism to formalize the inherent unpredictabil-ity in system interactions. In this sense, non-determinism is one way of explicitlyrepresenting partial behavioral information. The following example illustrates theseideas.

Example 2.2 Process P below is an abstract model of a biological system: in thepresence of a certain amount of ATP (i.e., energy) the system releases an enzyme;in the case some ATP is present and the conditions of some electrochemical gradient
5
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are appropriate, it emits a positive signal:

when ATP > 0 do tell(releaseEnzyme = 1)
P = +

when ATP > 0 ^ elecGradient = 1 do tell(emitSignal = 1):
The evolution of P depends on the information in the current store. The simplestcase is with the (empty) store true: P cannot add any further information. In thestore d = (ATP � 50), P causes the store to become d^ (releaseEnzyme = 1) sincein the �rst alternative it holds that (ATP � 50) j= (ATP > 0) and the guard ofthe second alternative does not entail from d. The interesting case is when bothguards in P are enabled; as in the store e = (ATP > 0) ^ (elecGradient = 1).Depending on which process is chosen for execution, the �nal store could be eithere ^ (releaseEnzyme = 1) or e ^ (emitSignal = 1). Based on partial information, Pconstitutes a succinct representation of an unpredictable behavior.
Communication
Process P k Q represents the parallel composition of P and Q. In one time unit Pand Q operate concurrently, \communicating" via the common store by adding andquerying information. We use Qi2I Pi, where I is a �nite set of indexes, to denotethe parallel composition of all Pi.
Example 2.3 Assume process P as in the Example 2.2 and the following processQ:

when releaseEnzyme = 1 do tell(promoteReaction = 1)
Q = +

when emitSignal = 1 do tell(promoteReaction = 0):
Informally, Q promotes a reaction to occur once the presence of an enzyme hasbeen detected and opposes to such a reaction if a particular signaling processhas been activated. The parallel composition P k Q in the store e = (ATP >0) ^ (elecGradient = 1) behaves as follows. Since the choice in P guarantees thepresence of either releaseEnzime = 1 or emitSignal = 1, process P k Q would causethe store to become either e ^ (releaseEnzyme = 1) ^ (promoteReaction = 1) ore ^ (emitSignal = 1) ^ (promoteReaction = 0).
Local Information
In ntcc, as in most process calculi, there is a construct that restricts the interfacethrough which a process can interact with each other, thus allowing for the modelingof local behavior. Processes of the form local x in P behave like P , except that allthe information on x produced by P can only be seen by P and the information onx produced by other processes cannot be seen by P .

In addition to the conventional spirit of this kind of operators, in the context ofpartial information, local information may represent a valuable help in the analysis
6
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of systems. When performing overall analyzes of complex systems, local variablesmay help to \hide" the behavior of such components that are irrelevant in theinteractions to be analyzed.
Example 2.4 Consider a complex system (e.g., a cell) represented by a processC. Assume that the de�nition of C involves a set of variables X = fx1; x2; : : : ; xngwhich represent some features of interest. In this way, in a \standalone" analysis ofC, variables in X would give a comprehensive view of its behavior over time.

Assume now that we are interested in a process T consisting in the interactionof a large number of identical cells, i.e., T = C1 k : : : k Cm. In this case, as thefocus of the analysis has moved from a local level (a single cell) to a global one(a tissue), it is necessary to abstract from the behavior induced by those variablesin each Xi (associated with Ci) that do not participate in the interaction thatis being modeled. Let Xi � X�
i = fx�1; x�2; : : : ; x�ng be the set containing those\irrelevant" variables 2 . Therefore, each cell Ci could be better represented asCi� = local x�1; x�2; : : : ; x�n in Ci 3 , and the process T � = C1� k : : : k Cm� wouldrepresent cells' interaction.

Note that the internal structure of each cell remains unchanged by this hiding.Further, from an operational point of view, such a hiding is required to preservethe coherence in the values observed from P : an inconsistency may arise as each Cican assign a di�erent value to each xi.
From the example, it is possible to observe how the interplay of hiding and thenotion of partial information may allow to analyze systems at di�erent levels ofdetail.

Basic Timed Behavior
ntcc provides two basic time operators: next (P ) and unless c next (P ). Letus analyze them separately. next (P ) represents the activation of P in the nexttime interval. Hence, a move of next (P ) is a unit-delay of P . next (P ) can bealso considered as the simplest way of expressing the dynamical behavior over time.This is fundamental in ntcc, since information is not automatically transferredfrom one time interval to the next. Building up on next (P ), it is easy to thinkin more sophisticated delay constructs: we use nextn (P ) as an abbreviation fornext (next (: : :next (P )) : : :)), where next is repeated n times.

In the context of partial information, to be able of reasoning about absence ofinformation is both important and necessary. Although sometimes it is possible topredict some of the possible future states for a system, usually there is a strongneed of expressing unexpected behavior. In this kind of scenarios, processes of theform unless c nextP may come in handy: P will be activated only if c cannot beinferred from the current store. The \unless" processes thus add (weak) time-outsto the calculus, i.e., they wait one time unit for a piece of information c to be presentand if it is not, they trigger activity in the next time interval. To illustrate thisconsider the example below.
2 Note that X�

i should not contain the same variables that Xi since this would represent that every cell isisolated from each other.3 Notation local x1; : : : ; xn in P abbreviates the process local x1 in (local x2 in (: : : (local xn in P ) : : :)).
7
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Example 2.5 Process R = when a do P1+when b do P2+when c do P3 modelsthe prediction of three possible evolutions for a system (i.e., P1; P2 and P3). Noticethat since they might be just a small part of a complex behavior that is partiallyunderstood, a considerable amount of uncertainty has not been included. De�ninga process R� = R k unless (a _ b _ c) nextS would ensure that in the case of astimuli di�erent from a, b or c occurs, a consistent default state in the system (hererepresented by S) will be preserved.

De�nitions following this style of modeling not only allow more complete modelsbut also permit to exploit the advantages of counting with partial information in asafe manner.
Asynchrony
The ? operator allows to express asynchronous behavior through the time intervals.Process ?P represents an arbitrary long but �nite delay for the activation of P . Forexample, the process D = ?tell(enzymeReleased = 1) could represent the eventualpresence of a particular enzyme in the environment, but without providing an upperbound on when such a thing will actually occur.

This kind of asynchronous behavior therefore constitutes another instance ofpartial behavioral information: in addition to the partial information on the vari-ables that are part of the state of the system (and that is expressed by the operatorsdiscussed above), the ? operator allows to express partial information on the timeunits where processes are executed. This is particularly interesting when describ-ing (biological) processes that interact at unknown relative speeds. For instance, aprocess D k S (with D de�ned as above) could represent a exible representation ofthe interaction between a system S (which may require the presence of the enzyme)and the process which ensures the arrival of such an enzyme.
The partial information spirit of the asynchronous behavior in ntcc is strength-ened by the following derived operator, expressing bounded eventuality :
?[n;m] P = nextn (P ) + nextn+1 (P ) + � � �+ nextm�1 (P ) + nextm (P ):

This operator thus represents an additional amount of temporal (partial) informa-tion, as it ensures that P will be activated at some point within the time units in theclosed interval of naturals [n;m]. As in the original operator, there is no additionalinformation of when this restricted eventuality will take place.
Persistent Behavior
Somehow opposed to the eventual behavior enforced by asynchronous behavior,persistent (or in�nite) behavior serves to express conditions that are valid duringevery possible state of the system. The replication operator !P represents P knext (P ) k next2(P ) k : : :, i.e. unboundedly many copies of P but one at a time.As such, persistent behavior is an appropriate way of enforcing conditions statingground rules of the systems of interest.

A process illustrating this kind of behavior is D0 = ! tell(enzymeReleased = 1),the persistent version of the enzyme-related signal. D0 simply represents the fact
8
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that in every future time unit the constraint it involves will be available. Persis-tent behavior can also be understood as a mechanism that allows to move fromstatic descriptions or conditions (valid only in one state of the system) to dynamicstatements that are always valid.

As in the asynchronous case, it is possible to derive a bounded version of thepersistent operator:
![n;m] P = nextn (P ) k nextn+1 (P ) k � � � k nextm�1 (P ) k nextm (P ):

This operator represents the fact that P is always active during all the time unitsin the interval [n;m]. As its eventual counterpart, this derived operator (knownas bounded invariance) may come in handy when certain additional informationregarding the (persistent) execution of P is available.
2.2 Operational Semantics
The intuitive behavior for ntcc processes described above is formalized by means ofa structural operational semantics (SOS) that considers transitions between process-store con�gurations of the form hP; ci with stores represented as constraints. Thetransitions of the SOS are given by the relations �! and =). They are formallyde�ned in Appendix A. Intuitively, the internal transition hP; di �! hP 0; d0i shouldbe read as \P with store d reduces, in one internal step, to P 0 with store d0 ". The
observable transition P (c;d)====) R should be read as \P on input c, reduces inone time unit to R and outputs d". The observable transitions are obtained fromterminating sequences of internal transitions.

Let us now consider an in�nite sequence of observable transitions (or run)
P = P1 (s1;r1)====) P2 (s2;r2)====) P3 (s3;r3)====) : : :. This sequence can be interpreted as aninteraction between the system P and an environment. At a time unit i, the envi-ronment provides a stimulus si and Pi produces ri as a response. If � = s1:s2:s3 : : :
and �0 = r1:r2:r3 : : :, then the above interaction is represented as P (�;�0)====)!.

Alternatively, if � = true!, we can interpret the run as an interaction amongthe parallel components in P without the inuence of an external environment(i.e., each component is part of the environment of the others). In this case � iscalled the empty input sequence and �0 is regarded as a timed observation of suchan interaction in P . We will say that the strongest postcondition of a process P ,denoted sp(P ), denotes the set of all in�nite sequences that P can possibly output.
More precisely, sp(P ) = f�0 j for some � : P (�;�0)====)!g.

3 Speci�cation and Veri�cation for ntcc Processes
In this section we summarize some results regarding to Linear Temporal Logic (LTL)associated to ntcc. This particular LTL expresses properties over sequences of con-straints and we shall refer to it as CLTL. A sound, partially complete proof systemfor this logic is also described. Further details of this logic (including decidabilityresults) can be found in [14,21].
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The importance of the strong relationship between CLTL and ntcc is thata logic-based methodology for veri�cation of properties of biological systems canbe adopted, in addition to the observational approach that is induced by the op-erational semantics given above. That is, simulations of an ntcc process (i.e., itstimed observations) could be complemented by proofs of essential properties (statedas temporal formulas).
We begin giving the syntax of LTL formulas and then interpret them with theCLTL semantics. The formulas F;G; ::: 2 F are built from constraints c 2 C andvariables x 2 V in the underlying constraint system by:
F;G; : : : := c j _true j _false j F _̂ G j F __G j _:F j _9x F j �F j �F j }F
The constraint c (i.e., a �rst-order formula in the constraint system) representsa state formula. The dotted symbols represent the usual (temporal) Boolean andexistential operators. The dotted notation is needed as in CLTL these operators donot always coincide with those in the constraint system. The symbols �, �, and }denote the LTL modalities next, always and eventually. We use F _)G for _:F __G:Below we give the formulas a CLTL semantics. We �rst introduce some notationand the notion of x-variant. Intuitively, d is an x-variant of c i� they are the sameexcept for the information about x. More formally, given a sequence � = c1:c2: : : :,we use 9x� to denote the sequence 9xc19xc2 : : : : We shall use �(i) to denote thei� th element of �.

De�nition 3.1 [x-variant] A constraint d is an x-variant of c i� 9xc = 9xd. Simi-larly �0 is an x-variant of � i� 9x� = 9x�0:
De�nition 3.2 [CLTL Semantics] We say that � satis�es (or that it is a modelof) F in CLTL , written � j=CLTL F , i� h�; 1i j=CLTL F , where:

h�; ii j=CLTL _true h�; ii 6j=CLTL _false
h�; ii j=CLTL c i� �(i) j= c
h�; ii j=CLTL _:F i� h�; ii 6j=CLTL F
h�; ii j=CLTL F _̂ G i� h�; ii j=CLTL F and h�; ii j=CLTL G
h�; ii j=CLTL F __G i� h�; ii j=CLTL F or h�; ii j=CLTL G
h�; ii j=CLTL �F i� h�; i+ 1i j=CLTL F
h�; ii j=CLTL �F i� for all j � i h�; ji j=CLTL F
h�; ii j=CLTL }F i� there is a j � i such that h�; ji j=CLTL F
h�; ii j=CLTL _9x F i� there is an x-variant �0 of � such that h�0; ii j=CLTL F:

De�ne [[F ]]=f� j� j=CLTL Fg. F is CLTL valid i� [[F ]] = C!; and CLTL satis�ablei� [[F ]] 6= ;:
Process Veri�cation.

Intuitively, P j=CLTL F i� every sequence that P can possibly output, on inputsfrom arbitrary environments, satis�es F .
De�nition 3.3 We say that a process P satis�es F , written P j=CLTL F , i�sp(P ) � [[F ]].
Example 3.4 Assume R = ? tell(c) and F = }c. Then R j=CLTL F as in every se-quence output by R there must be an e entailing c. Also P = tell(c)+tell(d) j=CLTL
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LTELL tell(c) ` c LSUM
8i 2 I Pi ` AiP

i2I when ci do Pi `
__
i2I

(ci _̂ Ai) __ _̂
i2I

_: ci
LPAR

P ` A Q ` B
P k Q ` A _̂ B LUNL

P ` A

unless c next P ` c __�A

LREP
P ` A!P ` �A

LLOC
P ` A

local x in P ` _9x A
LSTAR

P ` A
?P ` }A

LNEXT
P ` A

next (P ) `�A
LCONS

P ` A
P ` B

if A _)B

Table 1A proof system for (linear-temporal) properties of ntcc processes
c _ d and P j=CLTL c __ d as every e output by P entails either c or d. Notice, how-ever, that Q = tell(c _ d) j=CLTL c _ d but Q 6j=CLTL (c __ d) in general, since Qcan output an e which certainly entails c_ d and still entails neither c nor d |takec = (x = 42); d = (x 6= 42) and e = c _ d. Therefore, c __ d distinguishes P from Q.

In order to reason about statements of the form P j=CLTL F , ntcc is equippedwith a proof (or inference) system for assertions of the form P ` F . The systemis presented in Table 1. We say that P ` F i� the assertion P ` F has a proof inthe system in Table 1. The assertion P ` F is intended to be the \counterpart"of P j= F in the sense that P ` F should approximate P j=CLTL F as closely aspossible (ideally, they should be equivalent). The following proposition from [14]states the correspondence between j= and `. We say that a process P is locallyindependent i� the guards of every non-unary sum in P contains no local variables.
Proposition 3.5 (Soundness) If P ` F then P j= F . Furthermore, (Complete-ness) if P is locally-independent and P j= F then P ` F .

Hence the proof system is sound, and also complete for locally independentprocesses |which represent a substantial family of ntcc processes. It is worthnoticing that our compelling example is in fact locally independent. Finally, thefollowing lemma will be useful in derivations (see [14] for further details):
Lemma 3.6 For every process P ,
1: P ` _true, 2: P 6` _false; 3: P ` A

P k Q ` A and 4: P ` A P ` B
P ` A _̂ B :

4 Analysing a Biological System in ntcc
In this section we show the use of our approach to model and verify biologicalsystems using the Sodium-Potassium pump as case study. We �rst give a shortbiological description of the system and propose an ntcc model representing itsbehavior. Later, we verify a non-trivial property over this model using the ntccreasoning techniques.
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4.1 Biological Description
An ion pump is a natural channel connecting the two sides of a membrane. Thefunction of these pumps is to move ions across the membrane in a process calledtransport. Depending on the source of the required energy, the transport can beeither passive or active. In passive transport ions freely move across the membranefollowing an electrochemical gradient. As ions move in the direction of the gradientthen the cell does not need to provide energy for the transport. Since in activetransport ions move against the direction of the gradient, the cell has to supplyenergy (usually in form of ATP) to accomplish this movement.

In particular, the Sodium-Potassium pump [20] (SP-pump in the sequel) is asystem for active transport of ions in animal eukaryotic cells. It exchanges Sodiumions inside the cell with Potassium ions outside of it. The pump is composed oftwo proteins known as the alpha and beta subunits. The purpose of the pumpis to keep the concentration of sodium inside the cell lower than outside. Thisdi�erence of concentrations generates an electrochemical gradient that leads thepassive transport of Sodium ions towards the cytoplasm in the cell. If the pumpdoes not work well then the gradient becomes weak for transport, thus a�ecting theentrance of required substances into the cell.
The pumping process in the SP-pump can be divided in six phases. At thebeginning there is a pump conformation with high a�nity for Sodium ions insidethe cell (1). This conformation encourages the binding of three Sodium ions with thepump. Then the alpha subunit is phosphorylated by ATP hydrolysis (2), leavinga residual ADP molecule in the cytoplasm. This chemical reaction provides theneeded energy for the pumping process. Once this occurs, the pump conformationchanges and then the Sodium ions can leave the cell (3).
At this point, there is a pump conformation with high a�nity for Potassiumions outside the cell (4). This results in the binding of two Potassium ions withthe pump. Hence, the alpha subunit is dephosphorylated (5) and the pump confor-mation returns to the initial state. At this moment Potassium ions can enter thecell (6). The pumping process is always performed regulating the concentration ofSodium in the cell.
In parallel to this active transport movement, there is a passive transport move-ment that allows Potassium and Sodium ions to move against the direction of theactive transport. This complementary movement is induced by an electrochemicalgradient present in the cell.

4.2 An ntcc model of the SP-pump
Here we propose an ntcc model of the SP-pump. We use non-deterministic andasynchronous behavior for modeling partial behavioral information regarding tem-poral responses of certain components. Before entering into the detailed descriptionof the model let us informally describe two encodings for recursive functions andmutable entities that will allow for cleaner model descriptions. A detailed accountof their de�nition can be found in [14].

Recursive De�nitions It is possible to encode recursive de�nitions of the form
q(x) def= Pq ; where q is the process name and Pq calls q only once and such a call

12



Guti�errez, P�erez, Rueda and Valencia
must be within the scope of a \next". Moreover, we can rely on the usual intuitionsconcerning procedure calls in a programming language.

Cells Using the basic ntcc syntax it is possible to provide cells, a basis for thespeci�cation and analysis of mutable and persistent data structures. A cell can bethought of as a structure that contains a value, and if tested, it yields this value. Acell keeps its value over the time units until it is modi�ed. We use notations x : vand x := v to represent the initialization and the assignment of a cell x with valuev, respectively. Also, we shall use notation x := x + z as an abbreviation of theassignment x := x0 + z, where x0 is the value of the cell x in the previous time unitand z is a �xed value. The operation x := x� z can be encoded analogously.
We now enter to describe the ntcc model representing the SP-pump, which ispresented in Figures 1 and 2. Let us �rst describe the main principles underlying itsmodeling. The model assumes a constraint system over �nite domains of integers,considering three places for interaction: inside and outside the cell, and an inter-mediate place where ions stay before entering or owing out of the cell (i.e., thepump). The model involves a series of persistent variables (modeled as cells) thatstore useful quantities about the pumping process. Output and input operations ofthe pump are then modeled as modi�cations over variables representing the numberof ions both inside and outside the cell. In particular, variables NaO, NaI , KO andKI represent the amount of Sodium and Potassium ions placed outside and insidethe cell, respectively. In addition, a certain amount of each kind of ion neededfor the correct functioning of the cell is assumed. Such amounts are denoted byNaIDEAL and KIDEAL. Finally, the model includes additional variables capturingother details of the pump: OPump represents the orientation of the pump (eitherinside or outside the cell), Alpha denotes the current binding of the alpha subunitand Pump represents the current content of the pump. These three variables willbe instantiated with constants that can be encoded by integers: for instance, pos-sible values for Alpha are P, free and null (note the special font style given toconstants). Finally, integer variables ATP and ADP represent the presence of ATPand ADP inside the cell, respectively.
The model in Figures 1 and 2 reect the complementary nature of active andpassive transport in the SP-pump, represented as ActiveTrans and PassiveTransprocesses, which are integrated as the NaKPump process. From this process it isthen possible to assume some environment in which the pump is placed. This is theintuition behind process System. We now proceed to explain in a greater detail theideas behind these processes.

Active Transport Phases
Process ActiveTrans integrates sub-processes for the six phases described before;these processes invoke each other. Some processes (i.e., NaPhase1, NaPhase2 andKPhase1) include possible recursive calls to themselves. This intends to representthe possibility that the system remains stuck in certain phases in spite of all theconditions needed to evolve are given. That is, we are trying to model \reversible"phases, a behavior that is represented by non-deterministic choices. As a result,those phases could be executed several times therefore delaying system execution inat least one time unit. Such a delay occurs because the system waits for the presence
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NaPhase1 def= when (NaI > NaIDEAL _KI < KIDEAL) ^ Pump = Empty ^OPump = In do

(next (NaI := NaI � 3 k Pump := Na k tell(unchangedK = 1) k NaPhase2) +
next (NaPhase1 k tell(unchangedK = 1) k tell(unchangedNa = 1)))

NaPhase2 def= when Pump = Na ^Alpha = free ^ATP > 0 do
(next (OPump := Out k Alpha := P k ADP := 1 k

tell(unchangedK = 1) k tell(unchangedNa = 1) k NaPhase3)
+ next (NaPhase2 k tell(unchangedK = 1) k tell(unchangedNa = 1)))

NaPhase3 def= when Pump = Na ^OPump = Out do

next (NaO := NaO + 3 k Pump := Empty k tell(unchangedK = 1) k KPhase1)
KPhase1 def= when Pump = Empty ^OPump = Out do

(next (Pump := K k KO := KO � 2 k tell(unchangedNa = 1) k KPhase2) +
next (KPhase1 k tell(unchangedK = 1) k tell(unchangedNa = 1)))

KPhase2 def= when Alpha = P ^ Pump = K do

next (OPump := In k ADP := 0 k Alpha := free k
tell(unchangedK = 1) k tell(unchangedNa = 1) k KPhase3)

KPhase3 def= when Pump = K ^OPump = In do

next (KI := KI + 2 k Pump := Empty k tell(unchangedNa = 1) k NaPhase1)
ActiveTrans def= NaPhase1

Figure 1. An ntcc model for the Sodium-Potassium pump (Part 1 of 2)
of some substances at a speci�c place of the pump. In fact, those substances couldbe available but not in the required place. This non-deterministic and asynchronousbehavior could represent other conditions on component binding, such as an appro-priate physical contact among elements that (chemically) react with components ofthe pump. Similarly, non-deterministic behavior can also represent some kind ofmalfunction. For instance, it is possible that in phase NaPhase2 the phosphatecould not bind to the alpha subunit, which would result in a malfunction of thesystem that could be directly observed from the evolution of the pump in time.
Passive Transport Phases
Process PassiveTrans de�nes two sub-processes: one for the entrance of Sodiumions and another for the output of Potassium ions. It is worth noticing that in themodeling of these sub-processes we are considering partial behavioral informationon the actual time when the ion movement really occurs, which is represented by abounded asynchronous operator.
Additional Processes
The integration of the above processes as the NakPump process is straightforward.There is an additional process (i.e., Control) which governs the global behavior ofthe pump w.r.t. the equilibrium of the ions amounts; in the case an equilibrium onthe amount of one of the ions is reached, a general system malfunction (denotedas death = 1) is established. As the other processes, the structure of this control
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PassiveNa def= unless NaO = NaI next

(next5 (PassiveNa) k
?[0;5](unless unchangedNa = 1 next (NaI := NaI + 3 k NaO := NaO � 3) k

when unchangedNa = 1 do (NaI := NaI + 3 k NaO := NaO � 3)))
PassiveK def= unless KO = KI next

(next5 (PassiveK) k
?[0;5](unless unchangedK = 1 next (KI := KI � 2 k KO := KO + 2) k

when unchangedK = 1 do (KI := KI � 2 k KO := KO + 2)))
PassiveTrans def= PassiveNa k PassiveK

Control def= ! (when NaI = NaO do tell(equilNa = 1) k
when KI = KO do tell(equilK = 1) k
when equilNa = 1 _ equilK = 1 _M do !(tell(death = 1)))

Start(�1:::6) def= !(tell(ATP > 0) k tell(NaIDEAL = �5) k tell(KIDEAL = �6))
ADP : 0 k Alpha : free k OPump : In k Pump : Empty k
NaI : �1 k NaO : �2 k KI : �3 k KO : �4

NaKPump def= local NaI ; NaO;KI ;KO; Alpha;ADP; Pump;OPump in

Start(�1:::6) k ActiveTrans k PassiveTrans k Control
System def= NaKPump k Environment

Figure 2. An ntcc model for the Sodium-Potassium pump (Part 2 of 2)
process makes it possible the inclusion of additional features. Process Start, whichreceives a group of six parameters (denoted as �1:::6), is self-explanatory.A remarkable feature of our model is that it can be parameterized with actualquantitative values extracted from experimentation. In our model ion concentra-tions depend on parameters which make it more accurate; more detailed modelsinvolving other biological components (such as, e.g., the electrochemical gradientsgoverning the dynamics of the passive transport and the magnitude of forces re-lated with the physical contact between ions and the pump) would then require theinclusion of more sophisticated numerical parameters. In this sense, considering aconstraint system over real numbers would not only allow to include more sophis-ticated conditions but also would allow to perform analyzes at di�erent levels ofdetail.
4.3 Proving Properties About Biological Models: A logic-based approach
In this section we give a non-trivial biological example of the reasoning capabilities ofntcc. In particular, the example deals with an inhibition process over the SP-pump.This inhibition may represent both a drug and a disease: to prevent circulatoryproblems, certain medicines induce a partial inhibition of the pump to augment thestrength of heart's contractions, thus improving blood circulation. On the otherhand, certain substances may cause a complete inhibition process over the pump,therefore causing the death of the cell.

The inhibition process example also allows us to take advantage of the exibility
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of the presented model. We will assume a (malicious) drug that is present in theenvironment surrounding the pump. The goal of this drug is to take control ofthe alpha subunit, thus preventing the phosphate from inducing a conformationalchange in the pump. In turn, this obstruction will lead to a complete inhibitionof the active transport mechanism enforced by the pump. We express this in ourmodel by specifying the Environment process as follows:

Environment def= Drug (1)
where Drug def= ?[m;n] when Alpha = free do !Alpha := null (with n > m).Note that the actual time unit whereDrug will be active is undetermined, because ofthe uncertainty induced by the ? operator. It is important to remark that althoughDrug is the only component explicitly described in the Environment process, othercomponents or systems can be easily included in its de�nition. In other words,we are focusing on the drug-related part of Environment. We will also denote byDrug0 the process obtained from the execution of Drug at a time m � j � n (i.e.,
Drug0 def= !Alpha := null) .

By inhibiting the active transport capabilities of the pump, the cell will reach anequilibrium between the internal and external concentrations of Sodium. Such anequilibrium, that causes the death of the cell, is not reversible and will occur in anundetermined future. These facts suggest us the following assertion to be veri�ed:
NaKPump k Drug ` }� death = 1 (2)

where death = 1 represents the death of the cell. Intuitively, we want to formallyverify that in the presence of the drug described above the cell will die in an unde-termined future, with no chance of returning to a previous state.
The complete inhibition of the active transport mechanism can be seen directlyon the model. At a certain stage of the process (just after NaPhase1), the alphasubunit will be empty, ready for a binding with some substance (P in the \healthy"case). The inclusion of Drug in the environment adds a new alternative of execu-tion, as both NaPhase2 and Drug have the chance of binding the subunit (with Pand null, respectively). In this (implicit) non-deterministic choice, we assume thesuccess of the drug in binding the alpha subunit. Note that this choice precludesthe active transport processes from the execution of the system. Therefore, at thatpoint, we can regard the system as the following processes:

Control k PassiveNa k Drug0 k RestOfSystem0 (3)
where RestOfSystem0 def= PassiveK k !(tell(ATP > 0) k tell(NaIDEAL = �5) ktell(KIDEAL = �6)). As a result, assertion (2) can be expressed as

Control k PassiveNa k Drug0 k RestOfSystem ` }� death = 1: (4)
In order to prove (4), we will restrict our attention to the interaction amongControl, PassiveNa and Drug0. Intuitively, due to the absence of the active trans-port mechanism the passive transport will introduce sodium ions into the cell until
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reaching an equilibrium (i.e., NaI = NaO). Once that occurs, Control (that hasbeen awaiting the equilibrium) emits equilNa = 1 to the environment. Such asignal is enough to determine the death of the cell.

The proof proceeds as follows. Let us �rst assume the following abbreviationsfor processes and guards:

G1 = (G2 _G3 _M) G2 = (equilNa = 1) G3 = (equilK = 1)
G4 = (NaI = NaO) G5 = (KI = KO) A def= when G1 do ! tell(death = 1)

B def= when G4 do tell(G2) C def= when G5 do tell(G3)
Consequently, and because of the replicated de�nition of Control, we have

Control def= ! A k ! B k ! C:
The following proposition represents an intuition derived from the de�nition ofPassiveNa and Drug0.
Proposition 4.1 PassiveNa k Drug0 ` }G4.

Once Drug0 is present in the system and sets the state of Alpha to null forevery future time unit, process ActiveTrans does not modify anymore neither NaIor NaO. As a consequence, process PassiveNa decrements NaO and incrementsNaI until they have the same value (i.e., NaI = NaO). This will take some timeunits, depending on the value of NaI and NaO when Drug0 be active in the system.This behavior can also be veri�ed applying the rules in the operational semanticsof ntcc.
Finally, using the proof system in Table 1, it is possible to derive a proof for (4).Let us �rst derive !(B k C) ` �(G4 _)G2) (Proposition 4.2):

B ` (G4 _̂ G2) __ _:G4 LSUM

B ` G4 _)G2 LCONS
C ` (G5 _̂ G3) __ _:G5 LSUM

C ` G5 _)G3 LCONS

B k C ` (G4 _)G2) _̂ (G5 _)G3) LPAR

B k C ` G4 _)G2 LCONS

!(B k C) ` �(G4 _)G2) LREP

With the above result, we can perform the following deductions. Let us �rststate an auxiliar derivation:

D = !(B k C) ` �(G4 _)G2) Prop: 4:2
PassiveNa k Drug0 ` }G4 Prop: 4:1

!(B k C) k PassiveNa k Drug0 ` �(G4 _)G2) _̂ }G4 LPAR

!(B k C) k PassiveNa k Drug0 ` }G2 LCONS
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We then get the following derivation

A ` (G1 _̂ � death = 1) __ _:G1 LSUM

A ` G1 _)� death = 1 LCONS

!A ` �(G1 _)� death = 1) LREP

!A ` �((G2 __G3 __M) _)� death = 1) LCONS

!A ` �(G2 _)� death = 1) LCONS
D!A k!B k!C k PassiveNa k Drug0 ` �(G2 _)� death = 1) _̂ }G2 LPAR

Control k PassiveNa k Drug0 ` }� death = 1 LCONS

Finally, using item 3 in Lemma 1, we obtain
Control k PassiveNa k Drug0 k RestOfSystem ` }� death = 1

hence proving the desired property.
Notice how the partial information constructs helped to better describe the be-havior of the SP-pump. They allow for exible and extensible system speci�cations.Moreover, since the associated temporal logic naturally captures the spirit of theseconstructs, the essential properties to be veri�ed can also involve partial informationin an explicit way.

5 Concluding Remarks
In this paper we have proposed ntcc, a process calculus based on constraints, asa suitable language for modeling and verifying biological systems. We have shownhow process constructs in ntcc naturally capture two kinds of partial information:quantitative and behavioral. Descriptions of many biological phenomena that areonly partially understood could greatly bene�t from the use of these kinds of partialinformation provided by ntcc.

Furthermore, ntcc provides a single, uni�ed framework where it is possible toboth model and reason about biological systems. This approach was illustrated bymodeling an ion transport mechanism and verifying one non-trivial property of sucha model. While the use of partial behavioral information statements was crucial todescribe and reason about a possible system failure, partial quantitative informationstatements provided exibility in the modeling process.
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A ntcc Operational Semantics

TELL
htell(c); di �! hskip; d ^ ci

SUM
d j= cj j 2 I˙P

i2I when ci do Pi; d
¸
�! hPj ; di

PAR
hP; ci �! hP 0; di

hP k Q; ci �! hP 0 k Q; di
LOC

hP; c ^ 9xdi �! hP 0; c0i

h(localx; c)P; di �! h(localx; c0)P 0; d ^ 9xc0i

UNL
hunless c nextP; di �! hskip; di

if d j= c

REP
h!P; di �! hP k next !P; di STAR

h?P; di �! hnext nP; di
if n � 0

STR
1 �! 2
01 �! 02 if 1 � 01 and 2 � 02

OBS
hP; ci �!� hQ; di 6�!

P
(c;d)====) R

if R � F (Q)
Table A.1Rules for internal reduction �! (upper part) and observable reduction =) (lower part).  6�! in OBSholds i� for no 0;  �! 0.

Note that � (structural congruence) is the smallest congruence satisfying: (1)P k skip � P , (2) P k Q � Q k P , and (3) P k (Q k R) � (P k Q) k R.
In rule OBS, the process R to be executed in the next time interval is equivalentto F (Q), the \future" of Q.

De�nition A.1 [Future Function] Let F : Proc * Proc be de�ned by

F (Q) =

8>>>>>><
>>>>>>:

skip if Q =Pi2I when ci do Qi

F (Q1) k F (Q2) if Q = Q1 k Q2
(localx)F (R) if Q = (localx; c)R
R if Q = nextR or Q = unless c nextR

Intuitively, F (Q) is obtained by removing from Q summations that did nottrigger activity and any local information which has been stored in Q, and by\unfolding" the sub-terms within \next" and \unless" expressions. Notice that Fdoes not need to be total since whenever we need to apply F to a Q (OBS inTable A.1), every tell(c), ?R and !R in Q will occur within a \next" or \unless"expression.
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